Software Engineering, Exercise Sheet 1

Martin Mehlmann
(mehlmann@informatik.uni-freiburg.de)

April 30, 2009

1/10

mehlmann@informatik.uni-freiburg.de

Exercise 1

» Code given:

s = "some random string";
s.x = 42;
S.X;

» Output of Rhino:

“/tmp/rhinol_7R1$ Jjava —-jar Js.jar
Rhino 1.6 release 7 2007 08 19

js> s = "some random string";

some random string

js> s.x = 42;

42

js> s.x;

js>

Software Engineering, Exercise Sheet 1 2/10

Exercise 1

» Problem: Javascript inserts conversion code
automatically
s = "some random string";
new String(s).x = 42;
new String(s) .x;
» “Correct” code:

s = new String("some random string");
s.x = 42;
S.X;
» Output is now
js> s = new String("some random string");

some random string
js> s.x = 42;
42
js> s.Xx;
42
» Static typing catches these kind of errors

Software Engineering, Exercise Sheet 1 3/10

Exercise 2

(a) 1+ trueis not type correct: true has type boolean, but
+ adds two expressions of type int.

(b) 23 + (47 —11) has type int:
(INT)

. . (IN
47 :int F11:int

F47 —11: int
F23+ (47 —-11): int

(INT) ——~—— (SUB)
(ADD) F23:int

(c) !('false) has type boolean

(BOOL)

F false :boolean

(NOT)

Flfalse :boolean

NOT
() F!('false) :boolean

Software Engineering, Exercise Sheet 1 4/10

Exercise 2

(d) y + x is not type correct: y has type boolean, but + adds
two expressions of type int.

(e) 'y has type boolean

Y :boolean € A
Al y:boolean
AFly :boolean

(VAR)
(NOT)

where A= (0, x : int,y : boolean)

Software Engineering, Exercise Sheet 1 5/10

Exercise 3

(@) 23+ (47 — 11) — 23 + 36 — 59

(B-SUB) 71—

3+ (47 —11) — 23136

B-ADD-R
()3

B-ADD) ——M
()23+36—>59
59 is a value
(b) (1 +1)+true — 2+ true
(B-ADD) -
141 —2

B-ADD-L
()(1+1)+true—>2+true

2 + true is not a value. Note that the original expression is
ill-typed.

Software Engineering, Exercise Sheet 1

6/10

Exercise 4

Lemma (Normalization)
For every expression ey, there exists an expression e, such that

€ — €1 —> 62— ...— epn_ {1 — €n

and no expression e, 1 exists with e, — ep.1.
Proof. Define the size of an expression as follows:

1 ife=xore=bore=[m]
size(e) = | 1+ size(€’) + size(e”’) fe=¢€ +¢’
1+ size(¢) ife=1l¢e

We can easily prove that e — €’ implies size(e) > size(¢€’).
(The proof is by induction on the derivation of e — €'.)

Software Engineering, Exercise Sheet 1 7/10

Exercise 4

We now assume the contraposition of the lemma to prove. That
is, we assume that for some expression g there exists an
infinite reduction sequence

e —€ —€— ... — €6 — €11 — ...

Then we argue: Because an expression’s size decreases with
every reduction step and because the size of an expression is
never negative, there exists some e; with size(e;) = 1.

But e, — €, 1, so size(ej 1) < size(e;) = 1 whichis a
contradiction.

Software Engineering, Exercise Sheet 1 8/10

Exercise 4

Lemma (Multi-step preservation)

If-ey:tandey — €1 — € — ... — ep,_1 — ep then
Fep:t.

Proof. By induction on n:
» n=0. Thent e, : t by assumption.

» n > 0 and the claim holds for n— 1. Hence, e, 4 : t and
en—1 — €ep. The preservation lemma now gives ast e, : t
as required.

Software Engineering, Exercise Sheet 1 9/10

Exercise 4

Theorem (Type soundness)
Ift- eq : t then there exists a value e, such thatt- e, : t and

€ — 61— 6 —...— eph_ 1 — €n

Proof. By the normalization lemma, we know that there exists
some expression e, with

€ —€1 —>6 —...— epn_{1 — €n

and no e, 1 exists with e, — ep 1.

The progress lemma now tells us that e, is a value (otherwise,
en would reduce to some e, 1).

The multi-step preservation lemma gives us + ey : t.

Software Engineering, Exercise Sheet 1 10/10

	Software Engineering, Exercise Sheet 1
	Exercise 1

