
Software Engineering - Exercise Sheet 10

Martin Mehlmann
(mehlmann@informatik.uni-freiburg.de)

July 7, 2009

mehlmann@informatik.uni-freiburg.de


Exercise 1.1

1. We observe a failure which is a null pointer exception in this
case.

2. The declaration of pi as 31.4 is a code smell i.e. likely to be a
defect. If we can relate the failure of the single testcase to pi,
we know that the declaration of pi as 31.4 is a defect. Note
that, if we can’t relate the failure to the definition of pi, this
does not mean that the definition of pi is correct.

3. The statement talks about a value of a variable z and is
therefore related to the program state at some point during
execution. If the value of the variable violates the
specification, we have an infection of the program state which
may propagate via other variables which depend on z .

4. We remove a bug or in other words, we fix a defect which was
distributed over three files in this case.

5. We observe another time than the expected one. Therefore
we observe a failure if the clock is actually intended to show
the local time.



Exercise 1.2

1. No, a defect only results in an infection of the program state
if it is actually executed by one of the test cases in your test
suite

2. No, either the infection is not visible as a program failure or
the infection is “healed” during execution again.

3. Yes, consider very rare cases where cosmic radiation or other
rare events may lead to a bit-flip. Another possibility where an
infection may occur without a defect in the program code is
invalid external data, e.g. read from a file.



Exercise 3

I If we prove a program correct using another program (the
proofer) we assume that the proofer works correctly which
may not be the case. Therefore the program may still contain
undetected defects because the proofer has.

I If we prove a program we always prove it with respect to some
specification. However, the specification itself may already be
incorrect, incomplete or unintended.

I Testing and Debugging can not only increase the confidence
in the correctness of a program but also lead to a better
overall understanding of the program code.



Exercise 4

import org.junit.*;
import static org.junit.Assert.*;
import java.net.URL;

public class URLTest extends Testcase {

@Before
public void setUp() {

String s;
s = ”http://www.somehost.com/somepath.php?query=whatever”;
this.url = new Url(s);

}

@After
public void tearDown() {

this.url = null;
}



Exercise 4

@Test
public void test_getProtocol() {

assertEquals(this.url.getProtocol(), ”http”);
}

@Test
public void test_getHost() {

assertEquals(this.url.getHost(), ”www.somehost.com”);
}

@Test
public void test_getPort() {

assertEquals(this.url.getPort(), 80);
}



Exercise 4

@Test
public void test_getPath() {

assertEquals(this.url.getPath(), ”somepath.php”);
}

@Test
public void test_getQuery() {

assertEquals(this.url.getQuery(), ”query=whatever”);
}

private URL url;
}


	Software Engineering - Exercise Sheet 10

