
Prof. P. Thiemann Summer Term 2009
M. Mehlmann

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2009/

Exercise Sheet 12

Exercise 1: Tracking Dependencies (15 Points)

Consider the following simple imperative program. The function read() reads a
number from the console and returns it. The function write() writes a number
to the console.

void main()

{

int a, b, sum, mul;

sum = 0;

mul = 1;

a = read();

b = read();

while (a <= b)

{

sum += a;

mul *= a;

a++;

}

write(sum);

write(mul);

}

Exercise 1.1: Effects of statements

Name for each statement in the above program the set of variables which are
read and the set of variables which are written by the statement.

Exercise 1.2: Control-Flow-Graph

In a Control-Flow-Graph, nodes represent program locations and are labelled
with statements. Edges are used to represent jumps. There is an edge from
statement A to B iff there is an execution of the program where B executes
directly after A.
Draw the Control-Flow-Graph of the above program. Use a dedicated entry
node labelled ‘Entry: main’ and a dedicated exit node labelled ‘Exit’.

1



Exercise 1.3: Control Dependencies

Use the Control-Flow-Graph from Exercise 1.2. Annotate it with control de-
pendencies. There should be a control-dependency edge from node A to node
B iff B is control-dependent on A.

Exercise 1.4: Data Dependencies

Use the Control-Flow-Graph from Exercise 1.2. Annotate it with data depen-
dencies. There should be a data-dependency edge from node A to node B iff B
is data-dependent on A.

Exercise 2: Keeping a Debugging Logbook (5 Points)

Download the java file Tree.java from the homepage. The class Tree imple-
ments a binary search tree. The function insert is supposed to insert a new
node into the tree. There are at least two defects in the implementation.
Systematically debug the program and try to find the defects. While doing this,
keep a debugging logbook where you explicitly write down all your hypotheses
and observations.

2


