Softwaretechnik

Lecture 03: Types and Type Soundness

Peter Thiemann

University of Freiburg, Germany

SS 2009

Table of Contents

Types and Type Correctness

JAUS: Java-Expressions (Ausdrücke) Evaluation of Expressions Type correctness Result

Types and Type Correctness

- Large software systems: many people involved
 - project manager, designer, programmer, tester, . . .
- Essential: divide into components with clear defined interfaces and specifications
 - ▶ How to divide the problem?
 - How to divide the work?
 - How to divide the tests?
- Problems
 - Are suitable libraries available?
 - Do the components match each other?
 - ▶ Do the components fulfill their specification?

Requirements

- Programming language/environment has to ensure:
 - each component implements its interfaces
 - the implementation fulfills the specification
 - each component is used correctly
- ▶ Main problem: meet the interfaces and specifications
 - ► Minimal interface: *management of names*Which operations does the component offer?
 - Minimal specification: types Which types do the arguments and the result of the operations have?
 - See interfaces in Java

Questions

- Which kind of security do types provide?
- ▶ Which kind of errors can be detected by using types?
- How do we provide type safety?
- ► How can we formalize type safety?

JAUS: Java-Expressions (Ausdrücke)

Grammar for a subset of Java expressions

```
variables
n ::= 0 | 1 | \dots
                             numbers
b ::= true | false
                             truth values
e ::= x | n | b | e+e | !e
                             expressions
```

Correct and Incorrect Expressions

type correct expressions

```
boolean flag;
       0
       true
       17 + 4
       !flag
```

expressions with type errors

Typing Rules

- For each kind of expression a typing rule defines
 - if an expression is type correct and
 - how to obtain the result type of the expression from the types of the subexpressions.
- Five kinds of expressions
 - Constant numbers have type int.
 - Truth values have type boolean.
 - ▶ The expression e_1+e_2 has type int, if e_1 and e_2 have type int.
 - ▶ The expression !e has type boolean, if e has type boolean.
 - A variable x has the type, with which it was declared.

Formalization of "Type Correct Expressions"

The Language of Types

$$t ::= int \mid boolean \quad types$$

Typing judgment: expression e has type t

 $\vdash e:t$

Formalization of "Typing Rules"

- A typing judgment is *valid*, if it is derivable according to the *typing* rules.
- ▶ To infer a valid typing judgment J we use a deduction system.
- ▶ A deduction system consists of a set of typing judgments and a set of typing rules.
- A typing rule (inference rule) is a pair $(J_1 \dots J_n, J_0)$ which consists of a list of judgments (assumptions, $J_1 \dots J_n$) and a judgment (conclusion, J_0) that is written as

$$\frac{J_1 \dots J_n}{J_0}$$

▶ If n = 0, a rule (ε, J_0) is an axiom.

Example: Typing Rules for JAUS

A number n has type int.

(INT)
$$\frac{}{\vdash n : int}$$

A truth value has type boolean.

$$(BOOL) - b : boolean$$

▶ An expression e_1+e_2 has type int if e_1 and e_2 has type int.

$$(ADD) \xrightarrow{\vdash e_1 : int \vdash e_2 : int} \vdash e_1 + e_2 : int$$

▶ An expression !e has type boolean, if e has type boolean.

$$(NOT) \frac{\vdash e : boolean}{\vdash !e : boolean}$$

Derivation Trees and Validity

- ▶ A judgment *J* is *valid* if a derivation tree for *J* exists.
- ▶ A derivation tree for the judgment *J* is defined by
 - 1. $\frac{1}{J}$, if $\frac{1}{J}$ is an axiom
 - 2. $\frac{\mathcal{J}_1 \dots \mathcal{J}_n}{J}$, if $\frac{J_1 \dots J_n}{J}$ is a rule and each \mathcal{J}_k is a derivation tree suitable for J_k .

Example: Derivation Trees

- ► $(INT) \xrightarrow{\vdash 0 : int}$ is a derivation tree for judgment $\vdash 0 : int$.
- ▶ $(BOOL) \frac{}{}$ | Figure : boolean is a derivation tree for true: boolean.
- ▶ The judgment \vdash 17 + 4 : int holds, because of the derivation tree

$$(ADD) \underline{\begin{array}{c} (INT) \overline{\hspace{0.2cm} \vdash 17 : int} \\ \hline \\ & \vdash 17 + 4 : int \end{array}}$$

► Programs declare variables

- ▶ Programs use variables according to their declaration
- ▶ Declarations are collected in a *type environment*.

$$A ::= \emptyset \mid A, x : t$$
 type environment

▶ An extended typing judgment contains a type environment: The expression *e* has the type *t* in the type environment *A*.

$$A \vdash e : t$$

typing rule for variables: A variable has the type, with which it is declared.

$$(VAR) \xrightarrow{x: t \in A} A \vdash x: t$$

Extension of the Remaining Typing Rules

▶ The typing rules propagate the environment.

$$(INT) \overline{A \vdash n : int}$$

$$(BOOL) \overline{A \vdash b : int}$$

$$(ADD) \overline{A \vdash e_1 : int \quad A \vdash e_2 : int}$$

$$A \vdash e_1 + e_2 : int$$

$$(NOT) \overline{A \vdash e : boolean}$$

$$A \vdash e : boolean$$

Example: Derivation with Variable

The declaration boolean flag; matches the type assumption

$$A = \emptyset$$
, flag: boolean

Hence

$$\frac{\texttt{flag:boolean} \in A}{A \vdash \texttt{flag:boolean}}$$
$$A \vdash ! \texttt{flag:boolean}$$

Intermediate Result

- Formal system for
 - syntax of expressions and types (CFG, BNF)
 - type judgments
 - validity of type judgments
- Open Questions
 - How to evaluate expressions?
 - ► Coherence between evaluation and type judgments

Evaluation of Expressions

Approach: Syntactic Rewriting

- ▶ Define a binary *reduction relation* $e \longrightarrow e'$ over expressions
- e is in relation to e' ($e \longrightarrow e'$) if one computational step leads from e to e'.
- ► Example:
 - **▶** 5+2 → 7
 - **▶** (5+2)+14 → 7+14

Result of Computations

- A value v is a number or a truth value.
- ▶ An expression can reach a value in many steps:
 - 0 steps: 0
 - ▶ 1 step: $5+2 \longrightarrow 7$
 - ightharpoonup 2 steps: $(5+2)+14 \longrightarrow 7+14 \longrightarrow 21$
- but
 - 14711
 - ▶ 1+false
 - \blacktriangleright (1+2)+false \longrightarrow 3+false
- These expressions cannot perform a reduction step. They correspond to runtime errors.
- Observation: these errors are type errors!

Formalization: Results and Reduction Steps

A value is a number or a truth value.

$$v := n \mid b$$
 values

- One reduction step
 - If the two operands are numbers, we can add the two numbers to obtain a number as result.

(B-ADD)
$$\overline{ [n_1]+[n_2] \longrightarrow [n_1+n_2]}$$

- [n] stands for the syntactic representation of the number n.
- ▶ If the operand of a negation is a truth value, the negation can be performed.

$$(B-TRUE) \xrightarrow{\text{!true} \longrightarrow false} (B-FALSE) \xrightarrow{\text{!false} \longrightarrow true}$$

Formalization: Nested Expressions

What happens if the operands of operations are not values? Evaluate the subexpressions first.

Negation

(B-NEG)
$$\xrightarrow{e \longrightarrow e'}$$

Addition, first operand

$$(\text{B-ADD-L}) \xrightarrow{e_1 \longrightarrow e_1'} \frac{e_1 \longrightarrow e_1'}{e_1 + e_2 \longrightarrow e_1' + e_2}$$

► Addition, second operand (only evaluate the second, if the first is a value)

(B-ADD-R)
$$\frac{e \longrightarrow e'}{v+e \longrightarrow v+e'}$$

- ► An expression that contains variables cannot be evaluated with the reduction steps.
- ▶ Eliminate variables with *substitution*, *i.e.*, replace each variable with a value. Then reduction can proceed.
- ▶ Applying a substitution $[v_1/x_1, \dots v_n/x_n]$ to an expression e, written as

$$e[v_1/x_1,\ldots v_n/x_n]$$

changes in e each occurrence of x_i to the corresponding value v_i .

- Example:
 - ► (!flag)[false/flag] = !false
 - $(m+n)[25/m, 17/n] \equiv 25+17$

Type Correctness Informally

- ▶ Type correctness: If there exists a type for an expression e, then e evaluates to a value in a finite number of steps.
- In particular, no runtime error happens.
- ▶ For the language JAUS the converse also holds (this is not correct in general, like in full Java).
- Prove in two steps (after Wright and Felleisen) Assume e has a type, then it holds:

Progress: Either e is a value or there exists a reduction step for e. Preservation: If $e \longrightarrow e'$, then e' and e have the same types.

Progress

If $\vdash e : t$ is derivable, then e is a value or there exists e' with $e \longrightarrow e'$.

Proof

Induction over the derivation tree of $\mathcal{J} = \vdash e : t$.

If (INT) $\frac{1}{n : int}$ is the final step of \mathcal{J} , then $e \equiv n$ is a value (and $t \equiv \text{int}$).

If (BOOL) $\overline{\ \vdash b : \mathtt{boolean}}$ is the last step of \mathcal{J} , then $e \equiv b$ is a value (and $t \equiv boolean$).

Progress: Addition

If $(ADD) \xrightarrow{\vdash e_1 : int} \vdash e_2 : int}$ is the final step of \mathcal{J} , then it holds that $e \equiv e_1 + e_2$ and $t \equiv int$. Moreover, it is derivable that $\vdash e_1 : int$ and $\vdash e_2 : int$. The induction hypothesis tells us that e_1 is a value or there exists an e_1' with $e_1 \longrightarrow e_1'$.

- ▶ If $e_1 \longrightarrow e_1'$ holds, we obtain that $e \equiv e_1 + e_2 \longrightarrow e' \equiv e_1' + e_2$ cause of rule (B-ADD-L). This is the desired result.
- ▶ In the case $e_1 \equiv v_1$ is a value, we concentrate on $\vdash e_2$: int. The induction hypothesis says that e_2 is either a value or there exists an e_2' with $e_2 \longrightarrow e_2'$.
 - ▶ In the second case we can use rule (B-ADD-R) and get: $e \equiv v_1 + e_2 \longrightarrow e' \equiv v_1 + e'_2$.
 - ▶ In the first case $(e_2 = v_1)$, we can prove easily that $v_1 \equiv n_1$ and $v_2 \equiv n_2$ are both numbers. Hence, we can apply the rule (B-ADD) and obtain the desired e'.

Progress: Negation

If (NOT) $\frac{\vdash e_1 : \text{boolean}}{\vdash \vdash e_1 : \text{boolean}}$ is the last step of \mathcal{J} , it holds that $e \equiv !e_1$ and $t \equiv \text{boolean}$ and $\vdash e_1$: boolean is derivable.

Using the induction hypothesis (e_1 is a value or there exists e' with $e \longrightarrow e'$) there are two cases.

- ▶ In the case that $e_1 \longrightarrow e'_1$, we conclude that there exists e' with $e \longrightarrow e'$ using rule (B-NEG).
- ▶ If $e_1 \equiv v$ is a value, it's easy to prove that v is a truth value. Hence, we can apply the rule (B-TRUE) or (B-FALSE).

QED

Preservation

If $\vdash e : t$ and $e \longrightarrow e'$, then $\vdash e' : t$.

Proof

Induction on the derivation $e \longrightarrow e'$.

If (B-ADD) $\frac{1}{\lceil n_1 \rceil + \lceil n_2 \rceil \longrightarrow \lceil n_1 + n_2 \rceil}$ is the reduction step, then it holds that $t \equiv \text{int}$ because of (ADD). We can apply (INT) to $e' = \lceil n_1 + n_2 \rceil$ and obtain the desired result $\vdash \lceil n_1 + n_2 \rceil$: int.

If $(B-TRUE) \xrightarrow{|true \longrightarrow false}$ is the reduction step it holds that $t \equiv \text{boolean because of (NOT)}$. We can apply (BOOL) to e' = falseand get the desired result ⊢ false : boolean.

The case for rule $B ext{-}FALSE$ is analoguous.

Preservation: Addition

If (B-ADD-L) $\xrightarrow{e_1 \longrightarrow e'_1} e_1 + e_2 \longrightarrow e'_1 + e_2$ is the occasion for the last step, we obtain through $\vdash e:t$ that

$$(ADD) \xrightarrow{\vdash e_1 : int \vdash e_2 : int} \vdash e_1 + e_2 : int$$

holds with $e \equiv e_1 + e_2$ and $t \equiv \text{int}$.

From $\vdash e_1$: int and $e_1 \longrightarrow e_1'$ it follows by induction that $\vdash e_1'$: int holds. Another application of (ADD) on $\vdash e_1'$: int and $\vdash e_2$: int yields $\vdash e_1' + e_2$: int.

The case of rule (B-ADD-R) is analoguous.

Preservation: Negation

If (B-NEG) $\xrightarrow{e_1 \longrightarrow e'_1}$ is the occasion for the last step, we get through $\vdash e:t$, that

$$(NOT) \frac{\vdash e_1 : boolean}{\vdash !e_1 : boolean}$$

holds with $e \equiv e_1$ and $t \equiv boolean$.

From $\vdash e_1$: boolean and $e_1 \longrightarrow e'_1$ we conclude (using induction) that

 $\vdash e'_1$: boolean holds. Another application of rule (NOT) to

 $\vdash e'_1$: boolean yields $\vdash !e'_1$: boolean.

QED

Elimination of Variables by Substitution

Intention

If $x_1: t_1, \ldots, x_n: t_n \vdash e: t$ and $\vdash v_i: t_i$ (for all i), then it holds $\vdash e[v_1/x_1, \ldots, v_1/x_1] : t.$

Assertion

If $A', x_0 : t_0 \vdash e : t$ and $A' \vdash e_0 : t_0$, then it holds $A' \vdash e[e_0/x_0] : t$.

Prove

Induction over derivation of $A \vdash e : t$ with $A \equiv A', x_0 : t_0$.

If $(VAR) \xrightarrow{x: t \in A}$ is the last step of the derivation, there are two

cases: Either $x \equiv x_0$ or not.

If $x \equiv x_0$ holds, then $e[e_0/x_0] \equiv e_0$. Because of the rule (VAR) it holds $t \equiv t_0$. Hence it holds $A' \vdash e_0 : t_0$ (use the assumption).

If $x \not\equiv x_0$, then $e[e_0/x_0] \equiv x$ and it holds $x : t \in A'$. Due to (VAR) it holds $A' \vdash x : t$.

Substitution: Constants

If (INT)
$$\frac{1}{A \vdash n : int}$$
 is the last step, it holds (INT) $\frac{1}{A' \vdash n : int}$.

If (BOOL)
$$\frac{}{A \vdash b : boolean}$$
 is the last step, it holds

(BOOL)
$$\overline{A' \vdash b : boolean}$$
.

Substitution: Addition

If (ADD) $\frac{A \vdash e_1 : \text{int} \quad A \vdash e_2 : \text{int}}{A \vdash e_1 + e_2 : \text{int}}$ is the last step, then the

induction hypothesis yields $A' \vdash e_1[e_0/x_0]$: int and $A' \vdash e_2[e_0/x_0]$: int.

Apply rule (ADD) yields $A' \vdash (e_1+e_2)[e_0/x_0]$: int.

Substitution: Negation

If (NOT) $\frac{A \vdash e_1 : boolean}{A \vdash !e_1 : boolean}$ is the last step, the induction hypothesis yields $A' \vdash e_1[e_0/x_0] : boolean$. Apply rule (NOT) yields $A' \vdash (!e_1)[e_0/x_0] : boolean$.

QED

Theorem: Type Soundness of JAUS

▶ If $\vdash e : t$, then there exists a value v with $\vdash v : t$ and reduction steps

$$e_0 \longrightarrow e_1, e_1 \longrightarrow e_2, \dots, e_{n-1} \longrightarrow e_n$$

with $e \equiv e_0$ and $e_n \equiv v$.

▶ If e contains variables, then we have to substitute them with suitable values (choose values with same types as the variables).