Softwaretechnik
Lecture 06: Design by Contract

Peter Thiemann

Universitit Freiburg, Germany

SS 2009

Table of Contents

Peter Thiemann (Univ. Freiburg)

Design by Contract

Softwaretechnik

SWT

2/1

Design by Contract

Basic Idea

Transfer the notion of contract between business partners to software
engineering

What is a contract?

A binding agreement that explicitly states the obligations and the benefits
of each partner

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 3/1

Design by Contract

Example: Contract between Builder and Landowner

Obligations Benefits

Landowner | Provide 5 acres of | Get building in less
land; pay for building if | than six months
completed in time

Builder Build house on provi- | No need to do any-

ded land in less than
six month

thing if provided land
is smaller than 5 acres;
Receive payment if
house finished in time

Peter Thiemann (Univ. Freiburg)

Softwaretechnik

SWT

4/1

Design by Contract Contracts for Procedural Programs

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods,

components/operations, . ..
In terms of software architecture, the partners are the components and

each connector may carry a contract.

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

5/1

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

> Goal: Specification of imperative procedures

» Approach: give assertions about the procedure

» Precondition

> must be true on entry
» ensured by caller of procedure

» Postcondition

> must be true on exit
> ensured by procedure if it terminates

> Precondition(State) = Postcondition(procedure(State))
> Notation: {Precondition} procedure {Postcondition}
> Assertions stated in first-order predicate logic

»> May also be used to specify the semantics of imperative programs

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

6/1

Design by Contract Contracts for Procedural Programs

Example

Recall the following procedure:

ok
x @Oparam a an integer
x @returns integer square root of a
*/
int root (int a) {
inti=0;
int k = 1;
int sum = 1;
while (sum <= a) {
k = k+2;
i = i+1;
sum = sum-k;
}

return i;

}

Peter Thiemann (Univ. Freiburg) Softwaretechnik

SWT

7/1

Design by Contract Contracts for Procedural Programs

Specification of root

> types guaranteed by compiler: a € integer and root € integer
(the result)

1. root as a partial function

Precondition: a > 0

Postcondition: root * root < a < (root + 1) * (root + 1)
2. root as a total function

Precondition: true
Postcondition:

(a>0 = rootxroot <a< (root+1)x*(root+1)
A

(a<0 = root=0)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 8/1

Design by Contract Contracts for Procedural Programs

Weakness and Strength

Goal:

> find weakest precondition
i.e. a precondition that is implied by all other preconditions
highest demand on procedure
greatest domain of procedure
(meaning of precondition false?)
» find strongest postcondition
i.e. a postcondition that implies all other postconditions
smallest range of procedure
(meaning of postcondition true?)

Met by “root as a total function”:
» true is weakest possible precondition

> “defensive programming”

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

9/1

Design by Contract Contracts for Procedural Programs

Example (Weakness and Strength)

Look at root as a function over integers
Precondition: true

Postcondition:

(a>0 = rootxroot <a< (root+1)x*(root+1))
A

(a<0 = root=0)

> true is the weakest precondition

» The postcondition can be strengthened to

(root >0) A
(>0 = root*xroot < a < (root + 1) * (root + 1)) A
(a<0 = root =0)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 10/1

Design by Contract Contracts for Procedural Programs

Partial Correctness vs Total Correctness

...of a procedure f with precondition P and postcondition @

» f is partially correct:
for all states S:
if precondition P holds for S and f terminates from state S, then
postcondition @ holds.

» f is totally correct:
for all states S:
if precondition P holds for S, then f terminates from state S, and
postcondition @ holds.

= Total correctness requires proof of termination

= Total correctness implies partial correctness

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 1/1

Design by Contract Contracts for Procedural Programs

An Example

Insert an element in a table of fixed size

int capacity; // size of table

int count; // number of elements in table
T get (String key) {...}

void put (T element, String key);

Precondition: table is not full

count < capacity
Postcondition: new element in table, count updated
count < capacity

A get(key) = element
A count = old count + 1

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

12/1

Design by Contract

Contracts for Procedural Programs

table so that it
may be retrieved
through key

Obligations Benefits
Caller Call put only on | Get modified table
non-full table in which element
is associated with
key
Procedure | Insert element in | No need to deal

with the case whe-
re table is full be-
fore insertion

Peter Thiemann (Univ. Freiburg)

Softwaretechnik

SWT

13/1

Design by Contract Contracts for Procedural Programs

Further elements of a contract

> type signature (minimal contract)
> exceptions raised
» temporal properties (type invariant)

> the capacity of the table does not change over time
> a set that is only supposed to grow

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

14 /1

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Contracts for methods have additional complications

> local state
receiving object’s state must be specified

» inheritance and dynamic method dispatch
receiving object’s type may be different than statically expected,;
method may be overridden

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

15 /1

Design by Contract Contracts for Object-Oriented Programs

Local State = Class Invariant

» class invariant INV is predicate that holds for all objects of the class
= must be established by all constructors

= must be maintained by all visible methods

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 16 /1

Design by Contract Contracts for Object-Oriented Programs

Pre- and Postconditions for Methods

» constructor methods ¢
{Pre.} c {INV}
» visible methods m

{Pren A INVY m {Post,, A INV}

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

17 /1

Design by Contract Contracts for Object-Oriented Programs

Table example revisited

> count and capacity are instance variables of class TABLE
> INVrppig is count < capacity

> specification of void put (T element, String key)
Precondition:
count < capacity

Postcondition:

get(key) = element A count = old count + 1

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 18 /1

Design by Contract Contracts for Object-Oriented Programs

Inheritance and Dynamic Binding

> Subclass may override a method definition
» Effect on specification:

» Subclass may have different invariant
» Redefined methods may

> have different pre- and postconditions
> raise different exceptions
= method specialization

» Relation to invariant and pre-, postconditions in base class?

» Main guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T.

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 19/1

Design by Contract Contracts for Object-Oriented Programs

Invariant of a Subclass

Suppose

‘class MYTABLE extends TABLE ...

» each property expected of a TABLE object should also be granted by a
MYTABLE object

» if o has type MYTABLE then /NV1ypreg must hold for o
= INVyyrage = INV1ppie
» Example: MYTABLE might be a hash table with invariant

INVyyrapie = count < capacity/3

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 20/1

Design by Contract Contracts for Object-Oriented Programs

Method Specialization

If MYTABLE redefines put then ...
» the new precondition must be weaker and
» the new postcondition must be stronger
because the caller
> guaranties only Prepy¢ table

> and expects Postyyt tabie

TABLE cast = new MYTABLE (150);

cast.put (new Terminator (3), ” Arnie”);
cast.put (new Terminator (4), ” Arnie—puppet”);

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

21 /1

Design by Contract Contracts for Object-Oriented Programs

Requirements for Method Specialization

Suppose class T defines method m with assertions Pret ., and Postt
throwing exceptions Excr p,,. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

» Prer , = Pres ,, and
» Posts ,, = Postr ,, and
» Excs ., C Excr
each exception thrown by S.m may also be thrown by T.m

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 22 /1

Design by Contract Contracts for Object-Oriented Programs

Example: MYTABLE. put

> PreMYTABLE,put = count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

> MYTABLE may automatically resize the table, so that Preyyrasie pue = true
a sound method specialization because count < capacity = true!

> Suppose MYTABLE adds a new instance variable T lastInserted that holds
the last value inserted into the table.

POStMYTABLE,put = item(key) = element
A count = old count + 1
A lastInserted = element

is sound method specialization because PostuyrapLe put = POStraBLE, insert

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 23 /1

Design by Contract Contracts for Object-Oriented Programs

Method Specialization in Java 5

» Overriding methods in Java 5 only allows specialization of the result

type. (It can be replaced by a subtype).
» The parameter types muss stay unchanged (why?)

Example : Assume A extends B

class C {
Am(){

return new A();
}
}

class D extends C {
B m () { // overrides A.m
return new B();

Peter Thiemann (Univ. Freiburg) Softwaretechnik

SWT

2 /1

Design by Contract Contract Monitoring

Contract Monitoring

» What happens if a system’s execution violates an assertion at run
time?
> A violating execution runs outside the system's specification.
» The system's reaction may be arbitrary
» crash
> continue
» contract monitoring: evaluate assertions at run time and raise an
exception indicating any violation
» Why monitor?
» Debugging (with different levels of monitoring)
> Software fault tolerance (e.g., o and 3 releases)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 25 /1

Design by Contract Contract Monitoring

What can go wrong

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization
need to check (for all superclasses T of S)

» Prer , = Pres ,, on entry and
» Posts ,, = Postr ,, on exit

how?

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 26 /1

Design by Contract Contract Monitoring

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x =new S() and consider x.m()
> on entry

> if Pret , holds, then Pres ,, must hold, too
> Pres ,, must hold

> on exit

» Posts ,, must hold
> if Posts ,, holds, then Postt ,, must hold, too

> in general: cascade of implications between S and T
» pre- and postcondition only checked for S!

> If the precondition of S is not fulfilled, but the one of T is, then this
is a wrong method specialization.

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 27 /1

Design by Contract Contract Monitoring

Examples

interface I1Console {
int getMaxSize();
@post { getMaxSize > 0 }
void display (String s);
@pre { s.length () < this.getMaxSize() }
}

class Console implements IConsole {
int getMaxSize () { ... }
@post { getMaxSize > 0 }
void display (String s) { ... }
@pre { s.length () < this.getMaxSize() }

Peter Thiemann (Univ. Freiburg) Softwaretechnik

SWT

28 /1

Design by Contract Contract Monitoring

A Good Extension

class RunningConsole extends Console {
void display (String s) {

super.display(String. substring (s, ..., ... + getMaxSize()))

@pre { true }

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 29 /1

Design by Contract Contract Monitoring

A Bad Extension

class PrefixedConsole extends Console {
String getPrefix() {
return 7 >> 7,
}
void display (String s) {
super.display (this.getPrefix() + s);

@pre { s.length() < this.getMaxSize() — this.getPrefix().length() }

» caller may only guarantee IConsole’s precondition
> Console.display can be called with to long argument

» blame the programmer of PrefixedConsole!

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 30/1

Design by Contract Contract Monitoring

Example 2: Bad Interface Extension

Programmer Jim Programmer Don
] class C implements J {
mter.face I.{ void m (inta) { ... };
void m (int a); Qpre {2 > 10 }
Opre {a >0}
public static void
interface J extends | { :niaf r(lit;l%g(?'/[]) {
void m (int a); . _(5) '
@pre { a > 10} }I'm '
))

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

31/1

Design by Contract Contract Monitoring

Properties of Monitoring

> Assertions can be arbitrary side effect-free boolean expressions
» Instrumentation for monitoring can be generated from the assertions
» Monitoring can only prove the presence of violations, not their absence

» Absence of violations can only be guaranteed by formal verification

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 32/1

Design by Contract Verification of Contracts

Verification of Contracts

» Given: Specification of imperative procedure by Precondition and
Postcondition

» Goal: Formal proof for
Precondition(State) = Postcondition(procedure(State))

» Method: Hoare Logic, i.e., a proof system for Hoare triples of the form
{Precondition} procedure {Postcondition}

» named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many
other

» here: method bodies, no recursion, no pointers (extensions exist)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 33/1

Design by Contract Verification of Contracts

Syntax

E = c|x|E+E]|... expressions

B,P,Q = -B|PAQ|PVQ boolean expressions
| E=E|E<E]|...

C,D = x=E assignment
| C.D sequence
| if B then C else D conditional
| while Bdo C iteration

H n= {P}C{Q} Hoare triples

» (boolean) expressions are free of side effects

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

34 /1

