Modeling with UML

e UML = Unified Modeling Language
e semi-formal standard diagramatic notation

e cach diagram supports one or more development phases
— analysis,
— design, and

— implementation
e cach diagram combines several fundamental techniques

e each fundamental technique offers a particular of the system

- /

93

Overview Fundamental Techniques

94

Fundamental Techniques < Views

functional view
e hierarchy — function tree
e process — use case diagram (UML)

e information flow — data flow diagram (DFD)

data oriented view
e data structures — data dictionary (DD)

e class structure and relations — class diagram (UML)

state-oriented view
e state chart diagram (UML)
e activity diagram (UML)

¢ interaction diagram (UML)

95

Mapping Fundamental Techniques to Phases

T { -

96

Use Cases (Jacobson, UML), Template

Use case: name

Goal: achieved by successful execution
Category: primary, secondary, optional
Precondition:

Postcondition /success:

Postcondition /failure:

Actors:

Trigger:

Description: numbered tasks
Extensions: wrt previous tasks

Alternatives: wrt tasks

97

Example: MUA

Use case:

Goal: mail message sent to outgoing server
Category: primary

Postcondition/success: acknowledgement stored
Actors: end-user

Description:
1. enter recipients
2. enter text

3. select sending options

Extensions:
la. select recipients from address book
2a. enter formatting hints

Alternatives:

1b. extract recipients from message (reply)

2b. edit and compose multi-media fragments

98

Sachbearbeiter

administer room

/xtend>>

create room

<<include>> -

~
~

retrieve user profil

A

<<extend>>|

create user profile

Uni-Pfadfinder

@ister conr@

A

<<extend>>|

create connection

process path quer\

~—~ .
<<include>>
S~

<<include>>

locate room

construct path

99

Benutzer

% process order
customer T

% % process WWW order process mail order
private customer business customer

e generalization

e concrete and abstract use cases

e concrete and abstract actors

100

Class Diagrams (UML)

e representation of and their
e no information on dynamic behavior

e UML notation is graph with
- . classes (rectangles)

- : various relationships between classes

e may contain interface, packages, relationships, as well as instances
(objects, links)

101

Classes

Student name compartment

matriculation number
name

grades

issue certificate ()

enter grade ()

e only name compartment obligatory
e additional compartments may be defined

e class attributes / operations underlined

102

Contents of name compartment

1. optional stereotype
<control>, <boundary>, <entity> (defined by designer)

2. class name
abstract classes indicated by italics

3. optional property list (tagged value)
{abstract}, {leaf, author="1John Doe" }

103

Attributes compartment

Syntax of an attribute

visibility name :

visibility
name

type
multiplicity
ordering
initial-value

properties

type [multiplicity ordering 1 = initial-value { properties }

+1 #’ _’ ~

classifier name / PL type
sequence of intervals
ordered / unordered
language dependent

e.g., {frozen}

104

Design, Implementation

all phases

(Analysis), Design, Implementation
Design, Implementation

Design, Implementation

(Design), Implementation

(Design), Implementation

Visibility
e + public
e #, protected
e — private
e ~, package

e alternatively: notation of the implementation language

105

Multiplicity

Defines set of non-negative integers

Indicator | Meaning

0..1 Zero or one

One only
0..* Zero or more
1.* One or more
n Only n (where n j 1)
0..n Zero to n (where n ;j 1)
1..n One to n (where n ; 1)

106

Operations compartment

Syntax of an operation

visibility name (parameter-list) : return-type { properties }

visibility + # - 7
name
parameter-list kind name : type

kind € in, out, inout

return-type classifier name / PL type

properties e.g., {query}
{concurrency=...}
{abstract}

e class operations underlined

107

Design, Implementation
all phases

Design, Implementation

(Analysis), Design, Implementation

(Analysis), Design, Implementation

Relations in Class Diagrams

Binary Association

e indicates “collaboration” between two classes (possibly reflexive)
e solid line between two classes

e optional:
— association name
— decoration with role names

— navigation (Design)
— multiplicities (Design)
Generalization
e indicates subclass relation

e solid line with open arrow towards super class

108

Example: Class Diagram

class

inheritance

i

D | [k | [wa |
[omst | oz |

association
n m

role role

109

Example: class diagram with associations

Company

= product manufacturer

art
* 1

partno
subpart order orderer
* * *
0..1
superpart

110

Constraints

e Constraints (Restriktionen) wrt object state or association
e Notation: {constraint}

e Example constraints on associations:
{sorted}, {immutable}, {read-only}, {subset}, {xor}

e natural language, pseudo code, predicate logic, ...,

— Design by Contract (Bertrand Meyer, Eiffel)

111

Constraints for Design by Contract

e pre- and postconditions of operations
Ex: operation int sqrt()
precondition: {this.value >= 0}

postcondition: {result * result == this.value}

e invariants
maintained by each operation
Ex: {balance == sum(entry.amount());}

Responsibilities

° assigns responsibility to caller

e operation responsible for if precondition holds
(analogously for invariants)

e — no duplicate or omitted checks

e explicit checking of constraints while debugging
e.g. operation checkInvariants

112

Example: class diagram with object constraints

Order
dateReceived
isPrepaid *

Customer

name
address

number: String
dispatch()
close()

{ if Order.customer.creditRating is

creditRating(): String

/\

"poor”, then Order.isPrepaid

Corporate Customer

Personal Customer

must be true } contactName
creditRating
creditLimit
items | * remind()
Order Item billForMonth(Integer)

quantity: Integer
price: Money

*

salesrep| 0.1

isAvailable: Boolean * 1

Product

Employee

113

creditCard#

{ creditRating()== "poor” }

Composition

e aggregation is a particular association part-of
e Meaning: object “belongs existentially” to other object
e Object and its components live and die together

e Notation: edge with black rhombus as arrow head

Example
polygon car
1 1 1
{ordered} |[2.* 1 4
_ representation
point color wheel
line mode

114

Guidelines for Analysis Phase

e no multiplicities, navigation, etc

e do not model trivial operations like
— : object creation
— : object deletion
— : update an attribute

— : read an attribute
e for simplicity: each class “knows” all of its instances in OOA

e implementation may be attached to operation with a note

115

Object and Collaboration Diagrams (UML)

e notation for and their

e UML notation:

- . objects (rectangles), labeled with object name:type

- : links between objects
“objects that know each other”

Properties of object diagrams

e snapshot of a system state

e configuration of a specific group of objects

116

Example: Object Diagram

anObject:class

:class?

anotherObject

attributel = valuel

attribute2 = value2

117

:class3

Dynamic properties — collaboration diagrams

e objects —
e object notation stands for “any object of that class”

e object roles and links may be labeled with constraints

— {new}
— {transient}
— {destroyed}

e labeling links with numbered operations

e numbering implies sequence of execution

118

Example: Collaboration Diagram

1: display()

Internet
User

‘Hammer

‘Account

1.1: display()

1.1.1: display()

‘Profile

:Good

1.1.2: listOwnGoods()

1.1.2.1: getName()

:Good

‘Name

1.1.3: listObservedGoods()

1.1.3.1: getName()

119

‘Name

Finite State Machines (FSM, UML)

e modeling the evolving state of an object
e.g., Statechart diagrams in UML

e starting point:
deterministic finite automaton A = (Q, X, 6, qo, F') where
(): finite set of states
>:: finite input alphabet
J: @ x X — (@ transition function
go € @ initial state
F C (@ set of final states

120

Graphical Representation of FSM

o states of the automaton (circles or rectangles)

e arrow pointing to ¢

e final states indicated by double circle

o if 0(q,a) = ¢’ then labeled a from ¢ to ¢’
specifies a translation X* — A*

o M =(Q,%,A,0,\ q)

e replace final states F' by output alphabet A and output function A

o A:Q XY — A
edge from ¢ to d(q, a) additionally carries \(q, a)
° Ar@Q — A

state ¢ labeled with A\(q)

121

Example: digital clock as a Mealy-automaton

button 1 pressed/ button 1 pressed/

hours flashing display time

button 2 pressed/
increase hour adjust

button 2 pressed/
reset seconds

seconds

button 1 pressed/ button 1 pressed/

adjust seconds flashing

minutes flashing
minutes

button 2 pressed/
increase minutes

FSMs get big too quickly — structuring required

122

Statechart Diagram (Harel, UML)

e hybrid automata (“Moore + Mealy”)

e cach state may have
— executed on entry to state

labeling all incoming edges

— executed on exit of state

12

labeling all outgoing edges

executed while in state
e composite states
e states with history
e concurrent states

e optional: conditional state transitions

123

Example: Statechart Diagram

—~(

_J

event 1/

action 1

state 1

event 3
y

Ve

state 3

entry / action 3
exit / action 4
do / activity 4

include / submachine_invocation

)

event 2(condition 2)/

action 2

J

124

event 4

-
.

state 4

—®

Example: parking lot

1,
.

ticket inserted/ timeout /
display amount release coin:
Y
waiting for
coin
coin inserted (enough)/ coin inserted (not enough)/
print card display remaining amount

125

Composite States
e states can be grouped into a composite state with designated start
node (— hierarchy)
e edges may start and end at any level

e transition from a composite state =
set of transitions with identical labels from all members of the
composite state

e transition to a composite state leads to its initial state

e transitions may be “stubbed”

126

Example: Robot Control

YR YR Y
B S A et
C = - - igi
bend - ShOU|d 2 - abs \
Y R R R
o— N N / \"'* digit/ .
I digit/
R/2 A dlglt dlglt
+
YR 0 \
A/3 e -/ -/ -/
(> wlhoulde - rel digit/digit
R rotate R/4
N N —
any other any other
character character
Y Y
bad bad
command angle

127

States with History

e composite state with history — marked (H) — remembers the
Internal state on exit and resumes in that internal state on the next

entry
b
®
A\)

e the history state indicator may be target of transitions from the
outside and it may indicate a default “previous state”

e “deep history” (H*) remembers nested state

128

Concurrent States

e composite state may contain
(separated by dashed lines)

e all components execute concurrently
e transitions may depend on state of another component (synchronisation)
e explicit synchronization points

e concurrent transitions

129

Example:

sequence of states on input abcb:
(A4,C), (B,D), (B,D), (B,C), (A, C)

130

Statecharts and class diagrams

e operations can only be executed in particular state

e idea: incoming message (in class diagram) = event (in HA) that
triggers the operation

e trivial event names may be dropped

Alternative use

e class has operation that determines reception of an event

131

Example: Tank

Hf

o |

set new

start
 to fil

target level/
target level

filling
do: fill

|

is full

Y

.

start

y to drain

|

draining
do: drain

|

Tank

max level
target level
current level

fill
drain
set target level

IS empty

132

e can fill only if empty

e can drain only if full

Activity Diagrams (UML)

e flow diagrams + concurrency

e influenced by Petri nets, event diagrams (Odell), statechart
diagrams (Harel)

e — modeling of workflow, parallel activities

e — refinement of use cases

133

Ex: Activity Diagram

Person

[coffee present]

seek

[no coffee]

no Coke]

drink I

H_Li

[Coke present]

()
pour coffee
in filter

- J

fill in

water

take
can of Coke

put filter

in machine

brew

coffee

)
switch on
machine

light off

134

