
Softwaretechnik

Lecture 10 (?): Live Sequence Charts and a Glimpse of UML
Semantics

2009-06-08

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



The Languages of UML[OMG, 2007b, 684]

Figure A.5 - The taxonomy of structure and behavior diagram
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What Can/Will We Do With It?
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UML Mode [Fowler, http://martinfowler.com/bliki]

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

4/38



UML Mode [Fowler, http://martinfowler.com/bliki]

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

• UmlAsSketch,

• UmlAsBlueprint, and

• UmlAsProgrammingLanguage.

(Interestingly, Steve Mellor independently came up with the same classifications.)

4/38



UML Mode [Fowler, http://martinfowler.com/bliki]

“[...] people differ about what should be in the UML because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

• UmlAsSketch,

• UmlAsBlueprint, and

• UmlAsProgrammingLanguage.

(Interestingly, Steve Mellor independently came up with the same classifications.)

So when someone else’s view of the UML seems rather different to yours,
it may be because they use a different UmlMode to you.”
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One Extreme: UML As Sketch

“In this UmlMode, developers use the UML to
help communicate some aspects of a system. [...]

Sketches are also useful in documents,
in which case the focus is communication rather than completeness. [...]

The tools used for sketching are lightweight drawing tools and often

people are not too particular about keeping to every strict rule of the UML.

Most UML diagrams shown in books, such as mine, are sketches. ”

5/38



The Other Extreme: UML As Programming Language

“If you can detail the UML enough,
and provide semantics for everything you need in software,
you can make the UML be your programming language.

Tools can take the UML diagrams you draw
and compile them into executable code.

The promise of this is that UML is a higher level language and
thus more productive than current programming languages. ”
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UML As Blueprint

“[...] In forward engineering the idea is that
blueprints are developed by a designer
whose job is to build a detailed design
for a programmer to code up.

That design should be sufficiently complete
that all design decisions are laid out and
the programming should follow as a pretty straightforward activity
that requires little thought. [...]

Blueprints require much more sophisticated tools than sketches in order to
handle the details required for the task. [...] ”
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UML-as-Blueprint: Motivation

Wanted:

• Confirm validity early — are we developing what the customer wants?

• Preserve consistency — are there contradictions in the requirements?

• Establish correctness — is the design satisfying the requirements?

• Ensure quality — is the implementation following the design?

Claim: It’s easier to

• change

• find fundamental flaws in

a (rather abstract) model than a more or less complete implementation.

Thus: cost reduction (hopefully).

Note: also need unambiguous semantics.
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UML-as-Blueprint in Action: One Approach
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What does “correct” mean exactly?

• Given: UML Model M = (CD,OD,SM ,I ) with

• class diagram CD (for simplicity: only one),

• object diagram OD (giving initial configuration),

• state-machines SM (for simplicity: one per class),

• sequence diagrams I , finitely many.

SMJ KIJ K
J K J K
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What does “correct” mean exactly?

• Given: UML Model M = (CD,OD,SM ,I ) with

• class diagram CD (for simplicity: only one),

• object diagram OD (giving initial configuration),

• state-machines SM (for simplicity: one per class),

• sequence diagrams I , finitely many.

• Note:

• Mc := (CD,SM ,OD) has a semantics:

• the set JMcK of (computed) sequences of object diagrams over CD,
starting from object diagram OD.

• Mr := (CD,I ) has a semantics:

• the set JMrK of (accepted) sequences of object diagrams over CD.

• Correctness Problem:

• Are all computations produced by Mc accepted by the sequence diagrams?

• In other words: Do all computations adhere to the requirements?

• In symbols: JMcK ⊆ JMrK?
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Possible Reasons for a Detected Incorrectness

• ambiguous customer requirements
the sequence diagram author understood them this way,
the state-machine author understood them that way

• errors in design
the state-machine mistakenly doesn’t do what it’s author thinks/wishes it
does

• plain mistake
in one or the other

Having neither of these is (of course) desired.
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Today
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Plan

• Give syntax of Live Sequence Charts — a close relative of UML 2.0
Sequence Diagrams.
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Plan

• Give syntax of Live Sequence Charts — a close relative of UML 2.0
Sequence Diagrams.

• Sketch how a formal semantics for UML models can be defined:

• class diagrams characterise system states (object diagrams)

• state machines describe how system states evolve into each other

• sequence diagrams express requirements on sequences of evolving
system states — define semantics in terms of Büchi Automata

• Putting it all together to assess correctness.

\begin{advertisement}
For the full story see “Software Modelling, Design, and Analysis in UML”.

http://electures.informatik.uni-freiburg.de/

portal/web/guest/detail/-/modulnavigation/view/601/5217/

\end{advertisement}
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Live Sequence Charts: Syntax

[Damm and Harel, 2001, Harel and Marelly, 2003, Klose, 2003]
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Concrete LSC Syntax by Example

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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Concrete LSC Syntax by Example

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

: CrossingCtrl : BarrierCtrl

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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Building Blocks

• Instance Lines:

Environment c : C

• Messages: (asynchronous or synchronous/instantaneous)

E F

• Conditions and Local Invariants: (p, q, r e.g. OCL expressions)

p q r
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Intuitive Semantics: A Partial Order on Messages

(i) Strictly After:

E

F
E

(ii) Simultaneously: (simultaneous region)

E

q

F

(iii) Explicitly Unordered: (co-region)

E

F

Intuition: A computation of Mc violates an LSC if the occurrence of some events
doesn’t adhere to partial order obtained as the transitive closure of (i) to (iii).
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LSC Specialty: Modes

With LSCs,

• whole charts,

• locations, and

• elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/

local inv.

hot:

E

F

F p

cold:

E

F

F p

always vs. at
least once

must vs. may
progress

mustn’t vs.
may get lost

necessary vs.
legal exit
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LSC Specialty: Activation

• One major defect of MSCs and SDs:
they don’t say when the scenario has to/may be observed.

LSC: L
AC: p
AM: invariant I: strict

: C : D

E

F
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Example Revisited: What Is Required?

LSC: L
AC: actcond

AM: invariant I: strict

Environment : LightsCtrl

Operational

: CrossingCtrl : BarrierCtrl

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1
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UML Semantics: Approach
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Approach: System vs. Requirements

Recall:

• (for us) a UML model is M = (CD,OD,SM ,I ).

• And we set Mc := (CD,SM ,OD) and Mr := (CD,I ).

What we want is

• on the one hand a transition system

MM = (S, s0,→)

defined by Mc (“programmed behaviour of M”), and

• on the other hand one Büchi automaton

AL = (Σ, Q, q0,→, F )

per LSC L ∈ I (“behaviour requirements of M”).
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Approach: The Formal Relation

• Let Ids be a fixed set of (object) identities.

• MM = (S, s0,→) produces a set JMcK of computations of the form

π = s0
(cons0,Snd0)
−−−−−−−−→ s1

(cons1,Snd1)
−−−−−−−−→ s2 . . .

where

• cons i = ∅ or consi = {(id, E)} — object id consumed event E

• Snd i ⊆ Ids × E × Ids — object id1 sent event E to id2

J K
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Approach: The Formal Relation

• Let Ids be a fixed set of (object) identities.

• MM = (S, s0,→) produces a set JMcK of computations of the form

π = s0
(cons0,Snd0)
−−−−−−−−→ s1

(cons1,Snd1)
−−−−−−−−→ s2 . . .

where

• cons i = ∅ or consi = {(id, E)} — object id consumed event E

• Snd i ⊆ Ids × E × Ids — object id1 sent event E to id2

• AL = (Σ, Q, q0,→, F ) accepts a language L(AL) of words of the form

π̂ = (s0, (cons0, Snd0)), (s1, (cons1, Snd1)), . . .

• We say Mc satisfies the universal LSC L with invariant activation and
instance lines i1, . . . , in, denoted by Mc |= L, if and only if

∀π ∈ JMcK ∀ type-cons. bindings θ = {ij 7→ idj ∈ Ids | 1 ≤ j ≤ n} ∀ k ∈ N0 :

π̂/k activates L under θ =⇒ π̂/k ∈ Lθ(AL)
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Approach: Example Model

CrossingCtrl BarrierCtrl

bc

1xc

1

State-machine of CrossingCtrl:

•
idle prep

secure wait

secreq/

/bc ! barrier down

barrier ok/E ! done

State-machine of BarrierCtrl:

•
up lower

down

barrier down/

xc/barrier ok
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Example

•
idle prep

secure wait

secreq/

/bc ! barrier down

barrier ok/E ! done

:CrossingCtrl

st = idle

:BarrierCtrl

st = up

bc

xc

•
up lower

down

barrier down/

xc/barrier ok

LSC: L
AC: actcond

AM: invariant I: strict

Environment : CrossingCtrl : BarrierCtrl

secreq

barrier down

barrier ok

done
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Approach: All activation modes

Mc |= L with

• L universal (= hot), invariant if and only if

∀π ∈ JMcK ∀ θ ∀ k ∈ N0 : π̂/k activates L under θ =⇒ π̂/k ∈ Lθ(AL)

J K
J K

J K

I
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Approach: All activation modes

Mc |= L with

• L universal (= hot), invariant if and only if

∀π ∈ JMcK ∀ θ ∀ k ∈ N0 : π̂/k activates L under θ =⇒ π̂/k ∈ Lθ(AL)

• L universal (= hot), initial if and only if

∀π ∈ JMcK ∀ θ : π̂/0 activates L under θ =⇒ π̂/0 ∈ Lθ(AL)

J K
J K

We write M |= M if and only if M |= L for all L ∈ I .
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Approach: All activation modes

Mc |= L with

• L universal (= hot), invariant if and only if

∀π ∈ JMcK ∀ θ ∀ k ∈ N0 : π̂/k activates L under θ =⇒ π̂/k ∈ Lθ(AL)

• L universal (= hot), initial if and only if

∀π ∈ JMcK ∀ θ : π̂/0 activates L under θ =⇒ π̂/0 ∈ Lθ(AL)

• L existential (= cold), invariant if and only if

∃π ∈ JMcK ∃ θ ∃ k ∈ N0 : π̂/k activates L under θ =⇒ π̂/k ∈ Lθ(AL)

• L existential (= cold), initial if and only if

∃π ∈ JMcK ∃ θ : π̂/0 activates L under θ =⇒ π̂/0 ∈ Lθ(AL)

We write Mc |= Mr if and only if Mc |= L for all L ∈ I .
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So What’s Missing?

Given:

• M = (CD,OD,SM ,I )

Wanted:

• MM = (S, s0,→)

• AL = (Σ, Q, q0,→, F )

Missing to complete the picture:
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So What’s Missing?

Given:

• M = (CD,OD,SM ,I )

Wanted:

• MM = (S, s0,→)

• AL = (Σ, Q, q0,→, F )

Missing to complete the picture:

• what are the system states S, s0? — object diagrams

• when do we have s
(cons,Snd)
−−−−−−−→ s′? — one object takes a

state-machine transition

• what is Q and Σ? — cuts of L

• when do we have q
σ
−→ q′? — partial order of L

27/38



UML Semantics: System States
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System States

• Let M = (CD,OD,SM ,I ) be a UML model.

• The class diagram CD describes a set of complete object diagrams.

• We call an object diagram complete if and only if

• each attribute has a (type-consistent) value,

• in particular the implicit attribute giving the current state-machine
state (and whether the object is in the middle of a run-to-completion
step or not),

• each object obtains a unique name from a set Ids.

• In contrast:
we call a (complete or partial) object diagram legal if and only if

• all OCL constraints of the model are satisfied,

• in particular multiplicities of links.

So we simply use

• for S the set of all complete object diagrams of CD, and

• for s0 the object diagram OD (it should thus be complete).
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UML Semantics: Transition System

30/38



Evolution of System States

• Let s, s′ be system states, Ids unique object names in object diagrams.

• Then s
(cons,Snd)
−−−−−−−→ s′ if

• the object name id ∈ Ids occurs in s (say it is of class C),

• id’s current state-machine state is st ,

• there is a transition

st
trigger[guard]/[action]
−−−−−−−−−−−−→ st ′

in the state-machine SMC of C, which is enabled, that is,

• either ‘trigger’ is empty and id is not stable (cons = ∅), or
id is stable ‘trigger’ denotes a signal E, and an E-event is ready to be
consumed in the receive buffer (cons = {(E, id)}), and

• expression ‘guard’ holds in s,

and

• s′ is (exactly) the effect of executing ‘action’ for id in s.

31/38



Evolution of System States

• Let s, s′ be system states, Ids unique object names in object diagrams.

• Then s
(cons,Snd)
−−−−−−−→ s′ if

• the object name id ∈ Ids occurs in s (say it is of class C),

• id’s current state-machine state is st ,

• there is an enabled transition st
trigger[guard]/[action]
−−−−−−−−−−−−→ st ′ in the

state-machine SMC of C,

and

• s′ is (exactly) the effect of executing ‘action’ for id in s.

That is, for instance,

• removal of the consumed event from the input buffer,

• updating attributes of object id, or other objects via links,

• creation of new objects, deletion of id or other objects,

• sending events E1, . . . , En to objects id1, . . . , idn, n ≥ 0, resp.;

then Snd = {(id, E1, id1), . . . , (id, E1, id1)}.
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UML Semantics: Büchi Automaton
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The (Symbolic) Büchi Automaton of an LSC (Example)

i1 : C

p

i2 : D i3 : B

E

F G

¬Ei2

i1

Ei2

i1

¬(Ei2
∧ F i1

i2
∧ Gi3

i2
)

Ei2
∧ F i1

i2
∧ Gi3

i2

¬(Fi1
∧ Gi3

)

Fi1
∧ p Gi3

Fi1
∧ p ∧ Gi3

¬Gi3

Gi3

¬Fi1

Fi1
∧ p

true

AL = (Σ, Q, q0,→, F ):

• letters in Σ:
Ei (i consumes an E),

Ei
′

i (i sends E to i′)

• states Q: cuts of LSC

• q0: empty cut

• q → q′: partial order on cuts,
transitions labelled with prop.
logic expressions over Σ

• F : cold cuts and final cut
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The (Symbolic) Büchi Automaton of an LSC

Not covered:

• treatment of pre-charts

• . . .

See [Klose, 2003].
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Summary
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