5 Design — an Overview

256

The Design Phase

e "Programming in the large”

° transform requirements (requirements specification, product
model) into a

e decomposition into components
e SW architecture = components and connectors

e component
— designated computational unit with specified interface

— Examples: client, server, filter, layer, database

e connector
— interaction point between components

— Examples: procedure call, event broadcast, pipe

257

5.1 Architectural Styles — Overview
Dataflow systems
Batch sequential, Pipes and filters

Call-and-return systems
Main program and subroutine, OO systems, Hierarchical layers

Independent components
Communicating processes, Event systems

Virtual machines
Interpreters, Rule-based systems

Data-centered systems (repositories)
Databases, Hypertext systems, Blackboards

(according to Shaw and Garlan, Software Architecture, Prentice Hall)

258

Classification of an Architectural Style

e design vocabulary—types of components and connectors
e allowable structural patterns

e underlying computational model (semantic model)

e essential invariants

e common examples of use

e advantages/disadvantages

e common specializations

259

5.1.1 Batch Sequential

® separate passes

e each runs to completion before the next starts

e Example: traditional compiler architecture

Text

—eee

Lex

Syn

— Sem

260

Code

Code

5.1.2 Pipes and Filters

e each component (filter) transforms input streams to output streams
incrementally

e buffered channels (pipes) connect inputs to outputs
o filters are independent entities

e common specializations: pipeline (linear sequence of filters),
bounded pipes, typed pipes

Filters

/ I

. :: —— —— .
-
/ —] . =
Pipes—»

261

Properties of Pipes and Filters

+ 4+ 4+ o+ o+

global understanding supported
reuse supported

easy to maintain and enhance
specialized analysis supported
potential for concurrent execution
interactive applications
correpondences between streams

common format for data transmission

262

5.1.3 Object-Oriented Organization

e components: objects, connectors: method invocation
e each object is responsible for its integrity

e each object’s representation is hidden

263

Properties of OO Organization

+ implementation can be changed without affecting clients
+ bundling of operations with data

— objects must know their interaction partners (contrast with filters!)

264

5.1.4 Event-based, Implicit Invocation

e also called reactive integration or selective broadcast

e ecach component may
— announce events

— register an interest in certain events, associated with a callback
e when event occurs, the system invokes all registered callbacks
= announcer of event does not know which components are registered
e order of callback invocation cannot be assumed

e applications: integration of tools, maintaining consistency
constraints, incremental checking

265

Properties of Implicit Invocation

+ strongly supports reuse

+ eases system evolution

— lack of control

— data passed through shared repository

— correctness?

266

5.1.5 Layered Systems

e hierarchy of system components, grouped in layers
e inside of layer: arbitrary access between components

e between layers
— access restricted to lower layers: linear, strict, treeshaped

— small interfaces
o clarity, reusability, maintainability, testability

° not always appropriate, loss of efficiency, no
restrictions inside layers

e examples: communication protocols (OSl), database systems,
operating systems

267

Typical Setup

I/O layer

user interface

dialogue
layer

application
specific

application

application
general

logical
data access|

data management

physical
data access

268

Example: Three-Tier Architecture

Userlnterface

TransactionManagement

Three kinds of subsystems

— user interface
— control

— database

Enables consistent look-and-feel

Useful with single data repository

AccountManagement

Web architecture: Browser, Webserver, Applicationserver

269

5.1.6 Repositories

e central data structure (current state)
e independent components acting on it

e Example: architecture of modern compiler

Sem

S

P

‘///'
-~ \\\\\\\\\ Tree ‘“////)r

Edit Sym tab

270

5.1.7 Interpreters

e virtual machine in software
e pseudoprogram -+ interpretation engine

e Example: a programming language

Memory Program
/ -~ being
Data interpreted
Inputs
———| (program
state)

A
Computation
(State Machine)

\ v

imulat Selected Internal
Outputs Simula eq Instruction
Interpretation|= Interpreter
. \ Selected Dat
Engine 7 State
Data Access
(fetch/store)

271

5.1.8 Process Control

e systems that control physical processes
e based on process control loops

e terminology
Process variable. Measurable property of a process
Controlled variable. PV to be controlled by the system
Input variable. PV measuring input to process
Manipulated variable. PV that can be changed by controller

Set point. Desired value for controlled variable

e basic design choices:
— open-loop vs closed-loop

— feedback control vs feedforward control

272

Open-Loop Temperature Control

Return Air —

|

Hot Air —™

Furnace

273

Closed-Loop Temperature Control

Return Air —

|

Hot Air —™

Furnace Temperature
Sensor

qi Thermostat
| X Temperature-setting

Gas—valve control control

274

Feedback Control

Input variables

Controller
Process -
_ AsS to | Controlled
Set point manipulate variable

variables

275

Feedforward Control

Input variables

Process -
~ As to _ Controlled
Set point manipulate variable
variables

Controller

276

5.1.9 Further Architectural Styles

e Distributed processes
— topological features
— interprocess protocols

— client-server organization
e Main program/subroutine: mirroring the programming language

e Domain specific SW architectures
— tailored to family of applications

— Examples: avionics, vehicle management, ...
e State transition systems

e Combinations of architectural styles
— hierarchically

— mixture of connectors

277

5.2 Developing a Software Architecture
e The choice of a software architecture is a far reaching decision that
can influence the effort required to change the system later on.
e Criteria for decomposition
e Two case studies from Shaw and Garlan

e Formalization of an architecture

278

5.2.1 Ciriteria used for decomposition

= major processing step

= Information hiding: encapsulate a design decision
e.g., input format, data layout, choice of algorithm, computed data
vs. stored data, ...

e Cohesion: qualitative measure of dependency of items within a single
component

= Maximize cohesion: all elements of a component should contribute
to the performance of a single function

e Coupling: qualitative measure of interdependence of a collection of
components

= Minimize coupling: component only receives data essential for
performing its function

279

Kinds of Cohesion
e Coincidental Cohesion : (Worst) Component performs multiple unrelated
actions

e Logical Cohesion : Elements perform similar activities as selected from
outside component

e Temporal Cohesion : Elements are related in time (e.g.

initialization() or FatalErrorShutdown())

e Procedural Cohesion : Elements involved in different but sequential
activities

e Communicational Cohesion : Elements involved in different activities
based on same input info

e Sequential Cohesion : output from one function is input to next (pipeline)
e Informational Cohesion : independent actions on same data structure

e Functional Cohesion : all elements contribute to a single, well-defined task

280

Kinds of Coupling

e Content Coupling : (worst) component directly references data in
another

e Control Coupling : 2 components communicating with a control flag
e Common Coupling : 2 components communicating via global data

e Stamp Coupling : Communicating via a data structure passed as a
parameter. The data structure holds more information than the
recipient needs.

e Data Coupling : (best) Communicating via parameter passing. The
parameters passed are only those that the recipient needs.

e No coupling : independent components.

281

5.2.2 Key Word in Context [KWIC]

The KWIC index system accepts an ordered set of lines, each line is an ordered
set of words, and each word is an ordered set of characters. Any line may be
“circularly shifted” by repeatedly removing the first word and appending it at
the end of the line. The KWIC index system outputs a listing of all circular
shifts of all lines in alphabetical order.

David L. Parnas.
On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, December 1972

e Classical problem with practical applications
e Here: four different designs

e Assessment

282

Guidelines for Assessment

Is the architecure amenable to ...

e Changes in processing algorithm
Example: line shifting

e Changes in data representation

e Enhancement to system function
Example: noise words, interactive

o Reuse

e Good performance

283

Solution 1: Main program/subroutine with shared data

e Four basic functions: input, shift, alphabetize, and output

e subroutines coordinated by main program

e shared storage with unconstrained access
(why does this work?)

————— System I/O

— Direct Memory Access
— Subprogram call

Master control

PR

7/

/

/7

Input
medium

Circular
| Alph
nput <hift phabetizer Output
Characters Index Alphabetized >
Index Output
medium

284

Solution 1: Assessment

+ efficient data representation

+ distinct computational aspects are isolated in different modules

but serious drawbacks in terms of its ability to handle changes
— change in data storage format will affect almost all of the modules
— similarly: changes in algorithm and enhancements to system function

— reuse is not well-supported because each module of the system is
tied tightly to this particular application

285

Solution 2: Abstract data types

e decomposition into five modules

e data no longer shared

e access through procedural interfaces

— Subprogram call

System I/O

Master control

Input Output

I E o

II < (- cs

! Sl ® 2 % 8 =18 <

/ ol g Sl 8l o Slls

! il ol oGl 2 Tl .—
Input Characters Circular shift W ~| Alphabetic shiftg
medium

286

Output
medium

Solution 2: Assessment

Same processing modules as the first solution, but better amenable to
change.

+ algorithms and data representations can be changed in individual
modules without affecting others

+ reuse is better supported because modules make fewer assumptions
about the others with which they interact

— not well suited to enhancements: to add new functionality

— modify the existing modules—compromising their simplicity and
Integrity—or

— add new modules that lead to performance penalties.

287

Solution 3: Implicit Invocation

e component integration based on shared data

e but abstract access to data

e operations invoked implicitly as data is modified

————— System 1/O

— Implicit invocatio
— Subprogram call

Master control

AR
Circular

Input Alphabetizer Output
P shift P P

| el 3 el 2 |

| 5] 5] |

: 2s||5| |g|lg||= :
Input s s Output
medium { Lines W { Lines W medium

288

Solution 3: Assessment

+ functional enhancements easy: register additional modules
+ computations insulated from changes in data representation

+ supports reuse since modules only rely on externally triggered events

— processing order difficult to control

— requires more space than previous decompositions

289

Solution 4: Pipes and Filters

e four filters: input, shift, alphabetize, output

e distributed control

e data sharing limited to pipes

290

Input Circular > Pipe
medium | | Input ' shift ---- System I/O
Output
\—» Alphabetizer— Output r--- medﬂum

Solution 4: Assessment

+ intuitive flow of processing

+ supports reuse: each filter usable in isolation

+ supports enhancements: new filters are easily incorporated

+ amenable to modification: each filter is independent of the others
— impossible to support an interactive system

— inefficient use of space

— overhead for parsing and unparsing data

201

Summary

Abstract Implicit
Shared Data Data Type Invocation Pipe and Filter
Change in Algorithm — — + 4
Change in Data Rep — + — _
Change in Function - — + +
Performance -+ 0 — —
Reuse — + + i

202

5.2.3 Instrumentation Software

e task: develop reusable system architecture for oscilloscopes

e an oscilloscope ...

— samples electrical signals (at a rate of up to 2.5 GHz) and
displays pictures of them on a screen

— performs measurements on the signals and displays them

293

Ingredients of an Oscilloscope

e a very fast AD converter

e quite complex software
— many different measurements
— internal storage

— network interfaces

e sophisticated user interface (touch screen, etc)

204

Design Requirements

e Reuse
— rapid changes in user interface and hardware

— specialized markets

e Performance

— switching between different configurations
= domain specific software architecture

The design process considered several models.

295

An Object-Oriented Model

e OO model clarified data types: waveforms, signals, measurements,
trigger modes, ...

e did not explain how the types fit together

e result: confusion about partitioning of functionality

Oscilloscope
object
Waveform
Max—min wvfm X=Y wvfm Accumulate wvfm

296

A Layered Model

e Layers for: signal manipulation (hardware), waveform acquisition
(digitization), waveform manipulation (measurement, addition, FT),
display functions, user interaction

Hardware

Digitization

Visualization
User interface

Manipulation

e intuitively appealing, but wrong for this domain!

e abstraction boundaries conflict with needs for interaction, e.g., user
interaction at all levels

297

A Pipe-and-Filter Model

e oscilloscope functions as incremental transformers of data:
signal transformers, acquisition transformers, display transformers

Signal

—— > Couple Acquire To—-XY Clip ——
i Trace
Times Waveform
. Measurement
Trigger subsystem Measure [———>

e significant improvement

e problem: user interaction

298

A Modified Pipe-and-Filter Model

e cach filter has an external control interface

Coupling

Kind, Rate

l

ignal
% Couple

Acquire

Times

Waveform

Trigger subsystem

e solves user interface problem

Trans Size
To—-XY Clip ——=
Trace
Measurement
Measure ———>

— what aspects can be modified dynamically by the user

— decouples signal processing from user interface

299

Further Refinement

e Pipe-and-filter led to poor performance
— copying of waveforms impractical

— synchronization of fast filters with slow filters unacceptable

e Solution: colored pipes
— without copying

— ignore incoming data (protect slow filters)

e increased stylistic vocabulary allowed better design

300

5.2.4 Formally Specified Architecture

e Up to now: informal descritions of architecture
e programming languages not appropriate for describing connectors

= formal specification language (Z) can help

301

Overview and Datatypes

<ScaleH, ScaleV,

<Coupling> <Delay, Duration> PosnH, PosnV>

l

o

— > Couple Acquire

To—-XY

T

e Signals (S): inputs to the oscilloscope
e Waveforms (W): internally stored data
e Traces (T): pictures shown on screen

e functions of time, voltage, screen coordinates

Signal == AbsTime — Volts
Waveform == AbsTime + Volts

Trace == Horiz + Vert

302

Clip

Component Couple

e purpose: subtract DC offset from signal

e user configuration: choice of kind of input signal

Coupling ::= DC | AC | GND

e component modeled as a function that maps a user configuration
into a signal transformer

Couple : Coupling — Signal — Signal

Vs : Signal e
Couple DC s = s
Couple AC' s = Xt : AbsTime o s(t) — dc(s)
Couple GND s = At : AbsTime o 0

303

Component Acquire

e purpose: extract a time slice from a signal
e user configuration: delay and duration
e further input: trigger event

TriggerEvent == AbsTime

e waveform is only defined for a time interval of length duration
starting delay units after a trigger event

Acquire : RelTime x RelTime — TriggerEvent — Signal — Waveform

YV delay, dur : RelTivme, trig : TriggerEvent, s : Signal
Acquire (delay, dur) trig s =
{t : AbsTime | trig + delay < t < trig + delay + dur} <s

304

Packaging the user configuration

__ ChannelParameters
c : Coupling

delay, dur : RelTime
scaleH : RelTime
scaleV : Volts
posnH : Horiz
posnV : Vert

assuming the remaining components as

WaveformToTrace : RelTime x Volts x Horiz X Vert
— Waveform — Trace
Clip : Trace — Trace

305

System Description

ChannelConfiguration : ChannelParameters — TriggerEvent
— Signal — Trace

V p : ChannelParameters e
ChannelConfiguration p = Atrig : TriggerEvent e
Clip o
WaveformToTrace(p.scaleH , p.scaleV , p.posnH, p.posnV) o
Acquire(p.delay, p.dur) o
Couple p.c

What have we gained?
e precise characterization of system
e component = parameterized data transformer
e data sharing only via connections

e external parameters must be available

306

