Softwaretechnik
Design by Contract

Road Map

Software Engineering
- Albert-Ludwigs-University Freiburg

'

unt
Hllaure

June 29, 2011

(Software Enginering) Softwaretechnik June 29, 2011

Road Map

o Contracts for object-oriented programs

\gineering) Softwaretechnik June 29, 2011

o Contracts for object-oriented programs
o Contract monitoring
@ Program verification

@ Automatic program verification

1/40 (Software Engineering] Softwaretechnik June 29, 2011

Recall: Contracts for Procedural Programs

o Goal: Specification of imperative procedures
@ Approach: give assertions about the procedure (contract)
o Precondition
o must be true on entry
o ensured by caller of procedure
@ Postcondition
o must be true on exit
@ ensured by procedure if it terminates

o Precondition(State) = Postcondition(procedure(State))
o Notation: {Precondition} procedure {Postcondition}
o Assertions stated in first-order predicate logic

Softwaretechnik June 29, 2011

3/40

2/40

4 /40

An Example

class TABLE {
int capacity; // size of table
int count; // number of elements in table
T get (String key) {...}
void insert (T element, String key);

Insert an element in a table of fixed size
Precondition: table is not full
count < capacity
Postcondition: new element in table, count updated
count < capacity
A get(key) = element
A count = old count + 1

Softwaretechnik June 29,2011 5 /40

Invariant of a Subclass

class MYTABLE extends TABLE ...

each property expected of a TABLE object should also be granted by a
MYTABLE object

if o has type MYTABLE then /INVpgie must hold for o
= INVyyrapie = INVape

Example: MYTABLE might be a hash table with invariant

INVyrapLe = count < capacity/3

g) Softwaretechnik June 20,2011 7/ 40

Inheritance and Dynamic Binding

@ Subclass may override a method definition
o Effect on specification:
o Subclass may have different invariant
o Redefined methods may
o have different pre- and postconditions
o raise different exceptions
= method specialization

o Relation to invariant and pre-, postconditions in base class?

o Main guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T.

ngineering Softwaretechnik June 29,2011 6 / 40

Method Specialization

If MYTABLE redefines insert then ...
o the new precondition must be weaker and
o the new postcondition must be stronger
because in

TABLE cast = new MYTABLE (150);

cast.insert (new Terminator (3), "Arnie");

the caller
o guarantees only Pre;insert TapLE

o expects Post;qsert TaBLE

Softwaretechnik June 20,2011 8/ 40

Requirements for Method Specialization Example: MYTABLE. insert

@ Preuyrupie insert = count < capacity/3
not a sound method specialization because it is not implied by

Suppose class T defines method m with assertions Prer ,, and Postr ., count < capacity.
throwing exceptions Excr . If clas $ extends class T and redefines m o MYTABLE may automatically resize the table, 5o that Premys asere = true
then the redefinition is a sound method specialization i a sound method specialization because count < capacity = true!

o Prer,, = Pres, and @ Suppose MYTABLE adds a new instance variable T lastInserted that holds

o Posts ,, = Postr , and the last value inserted into the table.

@ Excs , C Excr

each :;ce tion é:rown by S.m may also be thrown by T.m Postarmiae sosere = get(key) = element
P Y 2. Yy y I A count = old count + 1

A lastInserted = element

is sound method specialization because Postuyrasik insert = POStTaBLE insert

(Extie0 BT i) Sl June 29,2011 9/ 40 Software Engineering Softwaretechnik June 20,2011 10/ 40

Road Map Road Map

o Contracts for object-oriented programs

@ Contract monitoring o Contract monitoring
@ Program verification

@ Automatic program verification

Softwaretechnik June 29,2011 12 /40

(Software Engineering) Softwaretechnik June 29,2011 11/ 40

Contract Monitoring

@ What happens if a system's execution violates an assertion at run
time?
@ A violating execution runs outside the system’s specification.
@ The system'’s reaction may be arbitrary
e crash
e continue
e contract monitoring: evaluate assertions at runtime and raise an
exception indicating any violation
@ Why monitor?
o Debugging (with different levels of monitoring)
o Software fault tolerance (e.g., o and 3 releases)

(Software Engineering) Softwaretechnik June 29,2011 13/ 40

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x =new 5() and consider x.m()
@ on entry
o if Prer , holds, then Preg ,, must hold, too
e Pres ,, must hold
@ on exit
@ Posts , must hold
o if Posts ,, holds, then Postr ,, must hold, too

@ in general: cascade of implications between S and T

oftware Engineering) Softwaretechnik June 29,2011 15/ 40

What can go wrong?

precondition: evaluate assertion on entry
identifies problem in the caller
postcondition: evaluate assertion on exit
identifies problem in the callee
invariant: evaluate assertion on entry and exit
problem in the callee’s class
hierarchy: unsound method specialization
need to check (for all superclasses T of S)
o Prer ,, = Pres n, on entry and
e Posts ,, = Postr ,, on exit
how?

Software Engineering Softwaretechnik June 29, 2011

Examples

interface IConsole {
int getMaxSize();
@post { getMaxSize > 0 }
void display (String s);
@pre { s.length () < this.getMaxSize() }

}
class Console implements IConsole {
int getMaxSize (O { ... }
Opost { getMaxSize > 0 }
void display (String s) { ... }

@pre { s.length () < this.getMaxSize() }

Softwaretechnik June 29, 2011

14/ 40

16 / 40

A Good Extension

class RunningConsole extends Console {
void display (String s) {

super.display
(String. substring (s, ..., ... + getMaxSize()))

¥
@pre { true }

e Engineering) Softwaretechnik June 29,2011 17/ 40

Properties of Monitoring

@ Assertions can be arbitrary side effect-free boolean expressions
@ Monitoring can only prove the presence of violations, not their absence
@ Absence of violations can only be guaranteed by formal verification

g) Softwaretechnik June 29,2011 19/ 40

A Bad Extension

class PrefixedConsole extends Console {
String getPrefix() {

}

return ">> ";

void display (String s) {

}

o caller may only guarantee IConsole's precondition

Road Map

super.display (this.getPrefix() + s);

@pre { s.length() <

this.getMaxSize() - this.getPrefix().length() }

blame the programmer of PrefixedConsole!

ngineering Softwaretechnik

Contracts for object-oriented programs
Contract monitoring
Program verification

Automatic program verification

Softwaretechnik

June 29, 2011

June 29, 2011

18/ 40

20 / 40

Road Map
@ Program verification

Softwaretechnik

c|lx|E+F|...
-B|PAQ|PVQ
| E=F|E<F]|...
= skip

| x=E

| CD
\

\

if B then C else D
while B do C

" w= {P} C{Q}

June 29,2011 21/ 40

expressions
boolean expressions

statements
assignment
sequence
conditional
iteration

Hoare triples

@ (boolean) expressions are free of side effects

(Software Engineering) Softwaretechnik

June 29,2011 23/ 40

Verification of Contracts

Postcondition

Goal: Formal proof for

Precondition(State) = Postcondition(procedure(State))

@ Method: Hoare Logic, i.e., a proof system for Hoare triples of the

form

{Precondition} procedure {Postcondition}

other

here: method bodies, no recursion, no pointers (extensions exist)

Softwaretechnik June 29, 2011

Semantics — Domains and Types

BValue =
IValue =
o € State =

€l
B[]
Sl

o State| := State U {1}

true | false
0f1]...
Variable — Value

Expression x State — [Value
BoolExpression x State — BValue
State, — State,

o result L indicates non-termination

Softwaretechnik June 29, 2011

Given: Specification of imperative procedure by Precondition and

named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many

22/ 40

24 / 40

Semantics — Expressions Semantics — Statements

o = ¢ S[elL -1
E[x]e = o(x) S|skip]o =0
E[E+Flo = E[EJo +E[Flo S[x=E]o = ox s E[E]o]
S[C:D]o = S[D](S[C]r)
BlE=Flo = E[E]o = E[F]o S[if B then C else D]o = B[B]o = true — S[C]o , S[D]o
B[-BJo = -B[B]o S[while B do CJo = F(o)
where F(0) = B[B]o = true — F(S[C]o) , o
(Software Enginesring) Softwaretechnik June 29,2011 25/ 40 (Software Engineering] Softwaretechnik June 29,2011 26 / 40
Proving a Hoare triple Proof Rules for Hoare Triples
Py C{Qy o Proving that {P} C {Q} holds directly from the definition is tedious
o Instead: define axioms and inferences rules
o holds if (Vo € State) P(o) = (Q(S[C]o) v S[C]o = L) (partial o Construct a derivation to prove the triple

correctness . . .
i}) @ Choice of axioms and rules guided by structure of C

o alternative reading: P, Q C State
{Prc{Qt=s[clpcQuL

(Software Engineering) Softwaretechnik June 29,2011 27 / 40

Softwaretechnik June 29,2011 28 /40

Skip Axiom

{P} skip {P}

June 20,2011 29/ 40

Sequence Rule

APYC{R} {R}D{Q}
{P} C:D (Q)

Example:

{x==2xy+1}y=2xy{x==y+1} {x==y+1}y=y+1l{x==y}
{x==2sy+1}y=2xyiy=y+1{x==y}

Softwaretechnik June 29,2011 31/ 40

Assignment Axiom

{P[x — E]} x = E {P}
Examples:
o {I==1}x=1{x==1}
o {odd(1)} x =1 {odd(x)}
o {x==2xy+1}y=2xy {x==y+1}

Conditional Rule

{PAB} C{Q} {PA-B} D{Q}

{P} if B then C else D {Q}

Softwaretechnik

June 29, 2011

June 29, 2011

30/ 40

32/ 40

Conditional Rule — Issues

Examples:

{PAx <0} z=—x{z==|x[}

{PAXx>0}z=x{z==|x|}

{P} if x <0 then z = —x else z = x {z == |x|}

@ incomplete!

@ precondition for z = —x should be (z == |x|)[z = —x] = —x == |x|

= need logical rules

(Software Engineering) Softwaretechnik June 29, 2011

Completed example:

x<0= —x==x {—x==|x|} z= —x {z == |x|}

Dy =

{x<0} z=—x {z==|x|}

{x<0} z=—x{z==x[} {x>0} z=x{z== x|}

{true} if x < 0 then z = —x else z = x {z == |x|}

June 29, 2011

Softwaretechnik

33/ 40

35 /40

Logical Rules

o strengthen precondition

Pr=P {P}C{Q}
{Frc{eQ}

o weaken postcondition

PICIQ) Q=0
{Pr C{Q}
Correctness obvious
o Example needs strengthening: P A x < 0= —x == x|
o holds if P = true!
o similarly: PAx > 0= x == x|
Softwaretechnik

June 29, 2011

While Rule

{PAB} C{P}
{P} while B do C {PA-B}

@ P is loop invariant
Example: try to prove

{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }
while sum <= a do

k = k+2;
i = i+1;
sum = sum+k

{ixi <= a /\ a < (E+D)*(i+1) }

= while rule not directly applicable ...

Softwaretechnik June 29, 2011

34 /40

36/ 40

While Rule

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==1
=
ixi<=a /\ i>=0 /\ k==2%i+1 /\ sum==(i+1)*(i+1)

O P=ixi<aNi>0Ak==2xi+1Asum==(i+1)x(i+1)
holds on entry to the loop

@ To prove that P is an invariant, requires to prove that
{PAsum<a} k=k+2;i=i+1;sum=sum+ k {P}

o It follows by the sequence rule and weakening:

Softwaretechnik June 20,2011 37/ 40

Step 2: Apply the while rule

=i+ 1;sum = sum + k {P}

{PAsum<a} k=k+2;
+1;sum = sum + k {P A sum > a}

{P} while sum < ado k=k+2;i =

Now, P Asum > a'is

{ ixi<=a /\ i>=0 /\ sum==(i+1)*(i+1) /\ sum>a }
implies
{ ixi<=a /\ a<(i+1)*(i+1) }

/\ k==2%i+1

June 29,2011 39 / 40

) Softwaretechnik

Proof of loop invariance

{ ixi<=a /\ i>=0 /\ k==2%i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i>=0 /\ k+2==2+2x%i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

k = k+2

{ i>=0 /\ E (i+1)*(i+1) /\ sum<=a }

{ it1>=1 /\ sum==(i+1)*(i+1) /\ sum<=a }

i= i+

{ i>=1 A\ /\ sum<=a }

{ i>=1 /\ /\ sumtk<=a+k }
i>=1 /\ sum<=a+k }
i>=1 /\ sum<=a+k }
i>=1 (i+1)*(i+1) /\ sum<=a+k }

{ ixi<=a /\ i>=0 /\ k==2+i+1 sum==(i+1)*(i+1) }

ngineering Softwaretechnik June 29,2011 38 / 40

Properties of Formal Verification

© requires more restrictions on assertions (e.g., use a certain logic) than
monitoring
o full compliance of code with specification can be guaranteed
o scalability is a challenging research topic:
o full automatization
o manageable for small/medium examples
o large examples require manual interaction

Softwaretechnik June 20,2011 40 / 40

