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Recall: Contracts for Procedural Programs

Goal: Specification of imperative procedures

Approach: give assertions about the procedure (contract)
Precondition

must be true on entry
ensured by caller of procedure

Postcondition

must be true on exit
ensured by procedure if it terminates

Precondition(State)⇒ Postcondition(procedure(State))

Notation: {Precondition} procedure {Postcondition}
Assertions stated in first-order predicate logic
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An Example

class TABLE {

int capacity; // size of table

int count; // number of elements in table

T get (String key) {...}

void insert (T element, String key);

}

Insert an element in a table of fixed size

Precondition: table is not full
count < capacity

Postcondition: new element in table, count updated

count ≤ capacity

∧ get(key) = element

∧ count = old count + 1
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Inheritance and Dynamic Binding

Subclass may override a method definition

Effect on specification:

Subclass may have different invariant
Redefined methods may

have different pre- and postconditions
raise different exceptions

⇒ method specialization

Relation to invariant and pre-, postconditions in base class?

Main guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T .
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Invariant of a Subclass

class MYTABLE extends TABLE ...

each property expected of a TABLE object should also be granted by a
MYTABLE object

if o has type MYTABLE then INV TABLE must hold for o

⇒ INV MYTABLE ⇒ INV TABLE

Example: MYTABLE might be a hash table with invariant

INV MYTABLE ≡ count ≤ capacity/3
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Method Specialization

If MYTABLE redefines insert then . . .

the new precondition must be weaker and

the new postcondition must be stronger

because in

TABLE cast = new MYTABLE (150);

...

cast.insert (new Terminator (3), "Arnie");

the caller

guarantees only Preinsert,TABLE

expects Postinsert,TABLE
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Requirements for Method Specialization

Suppose class T defines method m with assertions PreT ,m and PostT ,m

throwing exceptions ExcT ,m. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

PreT ,m ⇒ PreS ,m and

PostS,m ⇒ PostT ,m and

ExcS ,m ⊆ ExcT ,m

each exception thrown by S .m may also be thrown by T .m
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Example: MYTABLE.insert

PreMYTABLE,insert ≡ count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

MYTABLE may automatically resize the table, so that PreMYTABLE,insert ≡ true
a sound method specialization because count < capacity⇒ true!

Suppose MYTABLE adds a new instance variable T lastInserted that holds
the last value inserted into the table.

PostMYTABLE,insert ≡ get(key) = element

∧ count = old count + 1
∧ lastInserted = element

is sound method specialization because PostMYTABLE,insert ⇒ PostTABLE,insert
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Contract Monitoring

What happens if a system’s execution violates an assertion at run
time?

A violating execution runs outside the system’s specification.

The system’s reaction may be arbitrary

crash
continue
contract monitoring: evaluate assertions at runtime and raise an
exception indicating any violation

Why monitor?

Debugging (with different levels of monitoring)
Software fault tolerance (e.g., α and β releases)
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What can go wrong?

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization
need to check (for all superclasses T of S)

PreT ,m ⇒ PreS,m on entry and
PostS ,m ⇒ PostT ,m on exit

how?
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Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x = new S() and consider x .m()

on entry

if PreT ,m holds, then PreS,m must hold, too
PreS,m must hold

on exit

PostS,m must hold
if PostS,m holds, then PostT ,m must hold, too

in general: cascade of implications between S and T
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Examples

interface IConsole {

int getMaxSize();

@post { getMaxSize > 0 }

void display (String s);

@pre { s.length () < this.getMaxSize() }

}

class Console implements IConsole {

int getMaxSize () { ... }

@post { getMaxSize > 0 }

void display (String s) { ... }

@pre { s.length () < this.getMaxSize() }
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A Good Extension

class RunningConsole extends Console {

void display (String s) {

...

super.display

(String. substring (s, ..., ... + getMaxSize()))

...

}

@pre { true }

}
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A Bad Extension

class PrefixedConsole extends Console {

String getPrefix() {

return ">> ";

}

void display (String s) {

super.display (this.getPrefix() + s);

}

@pre { s.length() <

this.getMaxSize() - this.getPrefix().length() }

}

caller may only guarantee IConsole’s precondition

blame the programmer of PrefixedConsole!
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Properties of Monitoring

Assertions can be arbitrary side effect-free boolean expressions

Monitoring can only prove the presence of violations, not their absence

Absence of violations can only be guaranteed by formal verification
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Verification of Contracts

Given: Specification of imperative procedure by Precondition and
Postcondition

Goal: Formal proof for
Precondition(State)⇒ Postcondition(procedure(State))

Method: Hoare Logic, i.e., a proof system for Hoare triples of the
form

{Precondition} procedure {Postcondition}
named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many
other

here: method bodies, no recursion, no pointers (extensions exist)
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Syntax

E ,F ::= c | x | E + F | . . . expressions
B,P,Q ::= ¬B | P ∧ Q | P ∨ Q boolean expressions

| E = F | E ≤ F | . . .
C ,D ::= skip statements

| x=E assignment
| C ;D sequence
| if B then C else D conditional
| while B do C iteration

H ::= {P} C {Q} Hoare triples

(boolean) expressions are free of side effects
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Semantics — Domains and Types

BValue = true | false
IValue = 0 | 1 | . . .
σ ∈ State = Variable → Value

EJK : Expression × State → IValue
BJK : BoolExpression × State → BValue
SJK : State⊥ → State⊥

State⊥ := State ∪ {⊥}
result ⊥ indicates non-termination
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Semantics — Expressions

EJcKσ = c
EJxKσ = σ(x)
EJE+F Kσ = EJEKσ + EJF Kσ
. . .
BJE=F Kσ = EJEKσ = EJF Kσ
BJ¬BKσ = ¬BJBKσ
. . .
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Semantics — Statements

SJCK⊥ = ⊥
SJskipKσ = σ
SJx=EKσ = σ[x 7→ EJEKσ]
SJC ;DKσ = SJDK(SJCKσ)
SJif B then C else DKσ = BJBKσ = true→ SJCKσ , SJDKσ
SJwhile B do CKσ = F (σ)

where F (σ) = BJBKσ = true→ F (SJCKσ) , σ
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Proving a Hoare triple

{P} C {Q}

holds if (∀σ ∈ State) P(σ)⇒ (Q(SJCKσ) ∨ SJCKσ = ⊥) (partial
correctness)

alternative reading: P,Q ⊆ State
{P} C {Q} ≡ SJCKP ⊆ Q ∪ ⊥
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Proof Rules for Hoare Triples

Proving that {P} C {Q} holds directly from the definition is tedious

Instead: define axioms and inferences rules

Construct a derivation to prove the triple

Choice of axioms and rules guided by structure of C
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Skip Axiom

{P} skip {P}
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Assignment Axiom

{P[x 7→ E ]} x = E {P}
Examples:

{1 == 1} x = 1 {x == 1}
{odd(1)} x = 1 {odd(x)}
{x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1}
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Sequence Rule

{P} C {R} {R} D {Q}
{P} C ;D {Q}

Example:

{x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1} {x == y + 1} y = y + 1 {x == y}
{x == 2 ∗ y + 1} y = 2 ∗ y ; y = y + 1 {x == y}
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Conditional Rule

{P ∧ B} C {Q} {P ∧ ¬B} D {Q}
{P} if B then C else D {Q}
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Conditional Rule — Issues

Examples:

{P ∧ x < 0} z = −x {z == |x |} {P ∧ x ≥ 0} z = x {z == |x |}
{P} if x < 0 then z = −x else z = x {z == |x |}

incomplete!

precondition for z = −x should be (z == |x |)[z 7→ −x ] ≡ −x == |x |
⇒ need logical rules
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Logical Rules

strengthen precondition

P ′ ⇒ P {P} C {Q}
{P ′} C {Q}

weaken postcondition

{P} C {Q} Q ⇒ Q ′

{P} C {Q ′}

Correctness obvious

Example needs strengthening: P ∧ x < 0⇒ −x == |x |
holds if P ≡ true!

similarly: P ∧ x ≥ 0⇒ x == |x |
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Completed example:

D1 =
x < 0⇒ −x == |x | {−x == |x |} z = −x {z == |x |}

{x < 0} z = −x {z == |x |}

D2 =
x ≥ 0⇒ x == |x | {x == |x |} z = x {z == |x |}

{x ≥ 0} z = x {z == |x |}
D1

{x < 0} z = −x {z == |x |}
D2

{x ≥ 0} z = x {z == |x |}
{true} if x < 0 then z = −x else z = x {z == |x |}
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While Rule

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

P is loop invariant

Example: try to prove

{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }

while sum <= a do

k = k+2;

i = i+1;

sum = sum+k

{ i*i <= a /\ a < (i+1)*(i+1) }

⇒ while rule not directly applicable . . .
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While Rule

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==1

=>

i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1)

P ≡ i ∗ i ≤ a ∧ i ≥ 0 ∧ k == 2 ∗ i + 1 ∧ sum == (i + 1) ∗ (i + 1)
holds on entry to the loop

To prove that P is an invariant, requires to prove that
{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
It follows by the sequence rule and weakening:
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Proof of loop invariance

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i>=0 /\ k+2==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

k = k+2

{ i>=0 /\ k==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i+1>=1 /\ k==2*(i+1)+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

i = i+1

{ i>=1 /\ k==2*i+1 /\ sum==i*i /\ sum<=a }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum+k==i*i+k /\ sum+k<=a+k }

sum = sum+k

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+k /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+2*i+1 /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a+k }

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) }
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Step 2: Apply the while rule

{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
{P} while sum ≤ a do k = k + 2; i = i + 1; sum = sum + k {P ∧ sum > a}

Now, P ∧ sum > a is

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum>a }

implies

{ i*i<=a /\ a<(i+1)*(i+1) }
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Properties of Formal Verification

requires more restrictions on assertions (e.g., use a certain logic) than
monitoring

full compliance of code with specification can be guaranteed

scalability is a challenging research topic:

full automatization
manageable for small/medium examples
large examples require manual interaction
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