
Softwaretechnik
Design by Contract

Software Engineering
Albert-Ludwigs-University Freiburg

June 29, 2011

(Software Engineering) Softwaretechnik June 29, 2011 1 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 2 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 3 / 40

Recall: Contracts for Procedural Programs

Goal: Specification of imperative procedures

Approach: give assertions about the procedure (contract)
Precondition

must be true on entry
ensured by caller of procedure

Postcondition

must be true on exit
ensured by procedure if it terminates

Precondition(State)⇒ Postcondition(procedure(State))

Notation: {Precondition} procedure {Postcondition}
Assertions stated in first-order predicate logic

(Software Engineering) Softwaretechnik June 29, 2011 4 / 40

An Example

class TABLE {

int capacity; // size of table

int count; // number of elements in table

T get (String key) {...}

void insert (T element, String key);

}

Insert an element in a table of fixed size

Precondition: table is not full
count < capacity

Postcondition: new element in table, count updated

count ≤ capacity

∧ get(key) = element

∧ count = old count + 1

(Software Engineering) Softwaretechnik June 29, 2011 5 / 40

Inheritance and Dynamic Binding

Subclass may override a method definition

Effect on specification:

Subclass may have different invariant
Redefined methods may

have different pre- and postconditions
raise different exceptions

⇒ method specialization

Relation to invariant and pre-, postconditions in base class?

Main guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T .

(Software Engineering) Softwaretechnik June 29, 2011 6 / 40

Invariant of a Subclass

class MYTABLE extends TABLE ...

each property expected of a TABLE object should also be granted by a
MYTABLE object

if o has type MYTABLE then INV TABLE must hold for o

⇒ INV MYTABLE ⇒ INV TABLE

Example: MYTABLE might be a hash table with invariant

INV MYTABLE ≡ count ≤ capacity/3

(Software Engineering) Softwaretechnik June 29, 2011 7 / 40

Method Specialization

If MYTABLE redefines insert then . . .

the new precondition must be weaker and

the new postcondition must be stronger

because in

TABLE cast = new MYTABLE (150);

...

cast.insert (new Terminator (3), "Arnie");

the caller

guarantees only Preinsert,TABLE

expects Postinsert,TABLE

(Software Engineering) Softwaretechnik June 29, 2011 8 / 40

Requirements for Method Specialization

Suppose class T defines method m with assertions PreT ,m and PostT ,m

throwing exceptions ExcT ,m. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

PreT ,m ⇒ PreS ,m and

PostS,m ⇒ PostT ,m and

ExcS ,m ⊆ ExcT ,m

each exception thrown by S .m may also be thrown by T .m

(Software Engineering) Softwaretechnik June 29, 2011 9 / 40

Example: MYTABLE.insert

PreMYTABLE,insert ≡ count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

MYTABLE may automatically resize the table, so that PreMYTABLE,insert ≡ true
a sound method specialization because count < capacity⇒ true!

Suppose MYTABLE adds a new instance variable T lastInserted that holds
the last value inserted into the table.

PostMYTABLE,insert ≡ get(key) = element

∧ count = old count + 1
∧ lastInserted = element

is sound method specialization because PostMYTABLE,insert ⇒ PostTABLE,insert

(Software Engineering) Softwaretechnik June 29, 2011 10 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 11 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 12 / 40

Contract Monitoring

What happens if a system’s execution violates an assertion at run
time?

A violating execution runs outside the system’s specification.

The system’s reaction may be arbitrary

crash
continue
contract monitoring: evaluate assertions at runtime and raise an
exception indicating any violation

Why monitor?

Debugging (with different levels of monitoring)
Software fault tolerance (e.g., α and β releases)

(Software Engineering) Softwaretechnik June 29, 2011 13 / 40

What can go wrong?

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization
need to check (for all superclasses T of S)

PreT ,m ⇒ PreS,m on entry and
PostS ,m ⇒ PostT ,m on exit

how?

(Software Engineering) Softwaretechnik June 29, 2011 14 / 40

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x = new S() and consider x .m()

on entry

if PreT ,m holds, then PreS,m must hold, too
PreS,m must hold

on exit

PostS,m must hold
if PostS,m holds, then PostT ,m must hold, too

in general: cascade of implications between S and T

(Software Engineering) Softwaretechnik June 29, 2011 15 / 40

Examples

interface IConsole {

int getMaxSize();

@post { getMaxSize > 0 }

void display (String s);

@pre { s.length () < this.getMaxSize() }

}

class Console implements IConsole {

int getMaxSize () { ... }

@post { getMaxSize > 0 }

void display (String s) { ... }

@pre { s.length () < this.getMaxSize() }

(Software Engineering) Softwaretechnik June 29, 2011 16 / 40

A Good Extension

class RunningConsole extends Console {

void display (String s) {

...

super.display

(String. substring (s, ..., ... + getMaxSize()))

...

}

@pre { true }

}

(Software Engineering) Softwaretechnik June 29, 2011 17 / 40

A Bad Extension

class PrefixedConsole extends Console {

String getPrefix() {

return ">> ";

}

void display (String s) {

super.display (this.getPrefix() + s);

}

@pre { s.length() <

this.getMaxSize() - this.getPrefix().length() }

}

caller may only guarantee IConsole’s precondition

blame the programmer of PrefixedConsole!

(Software Engineering) Softwaretechnik June 29, 2011 18 / 40

Properties of Monitoring

Assertions can be arbitrary side effect-free boolean expressions

Monitoring can only prove the presence of violations, not their absence

Absence of violations can only be guaranteed by formal verification

(Software Engineering) Softwaretechnik June 29, 2011 19 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 20 / 40

Road Map

Contracts for object-oriented programs

Contract monitoring

Program verification

Automatic program verification

(Software Engineering) Softwaretechnik June 29, 2011 21 / 40

Verification of Contracts

Given: Specification of imperative procedure by Precondition and
Postcondition

Goal: Formal proof for
Precondition(State)⇒ Postcondition(procedure(State))

Method: Hoare Logic, i.e., a proof system for Hoare triples of the
form

{Precondition} procedure {Postcondition}
named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many
other

here: method bodies, no recursion, no pointers (extensions exist)

(Software Engineering) Softwaretechnik June 29, 2011 22 / 40

Syntax

E ,F ::= c | x | E + F | . . . expressions
B,P,Q ::= ¬B | P ∧ Q | P ∨ Q boolean expressions

| E = F | E ≤ F | . . .
C ,D ::= skip statements

| x=E assignment
| C ;D sequence
| if B then C else D conditional
| while B do C iteration

H ::= {P} C {Q} Hoare triples

(boolean) expressions are free of side effects

(Software Engineering) Softwaretechnik June 29, 2011 23 / 40

Semantics — Domains and Types

BValue = true | false
IValue = 0 | 1 | . . .
σ ∈ State = Variable → Value

EJK : Expression × State → IValue
BJK : BoolExpression × State → BValue
SJK : State⊥ → State⊥

State⊥ := State ∪ {⊥}
result ⊥ indicates non-termination

(Software Engineering) Softwaretechnik June 29, 2011 24 / 40

Semantics — Expressions

EJcKσ = c
EJxKσ = σ(x)
EJE+F Kσ = EJEKσ + EJF Kσ
. . .
BJE=F Kσ = EJEKσ = EJF Kσ
BJ¬BKσ = ¬BJBKσ
. . .

(Software Engineering) Softwaretechnik June 29, 2011 25 / 40

Semantics — Statements

SJCK⊥ = ⊥
SJskipKσ = σ
SJx=EKσ = σ[x 7→ EJEKσ]
SJC ;DKσ = SJDK(SJCKσ)
SJif B then C else DKσ = BJBKσ = true→ SJCKσ , SJDKσ
SJwhile B do CKσ = F (σ)

where F (σ) = BJBKσ = true→ F (SJCKσ) , σ

(Software Engineering) Softwaretechnik June 29, 2011 26 / 40

Proving a Hoare triple

{P} C {Q}

holds if (∀σ ∈ State) P(σ)⇒ (Q(SJCKσ) ∨ SJCKσ = ⊥) (partial
correctness)

alternative reading: P,Q ⊆ State
{P} C {Q} ≡ SJCKP ⊆ Q ∪ ⊥

(Software Engineering) Softwaretechnik June 29, 2011 27 / 40

Proof Rules for Hoare Triples

Proving that {P} C {Q} holds directly from the definition is tedious

Instead: define axioms and inferences rules

Construct a derivation to prove the triple

Choice of axioms and rules guided by structure of C

(Software Engineering) Softwaretechnik June 29, 2011 28 / 40

Skip Axiom

{P} skip {P}

(Software Engineering) Softwaretechnik June 29, 2011 29 / 40

Assignment Axiom

{P[x 7→ E]} x = E {P}
Examples:

{1 == 1} x = 1 {x == 1}
{odd(1)} x = 1 {odd(x)}
{x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1}

(Software Engineering) Softwaretechnik June 29, 2011 30 / 40

Sequence Rule

{P} C {R} {R} D {Q}
{P} C ;D {Q}

Example:

{x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1} {x == y + 1} y = y + 1 {x == y}
{x == 2 ∗ y + 1} y = 2 ∗ y ; y = y + 1 {x == y}

(Software Engineering) Softwaretechnik June 29, 2011 31 / 40

Conditional Rule

{P ∧ B} C {Q} {P ∧ ¬B} D {Q}
{P} if B then C else D {Q}

(Software Engineering) Softwaretechnik June 29, 2011 32 / 40

Conditional Rule — Issues

Examples:

{P ∧ x < 0} z = −x {z == |x |} {P ∧ x ≥ 0} z = x {z == |x |}
{P} if x < 0 then z = −x else z = x {z == |x |}

incomplete!

precondition for z = −x should be (z == |x |)[z 7→ −x] ≡ −x == |x |
⇒ need logical rules

(Software Engineering) Softwaretechnik June 29, 2011 33 / 40

Logical Rules

strengthen precondition

P ′ ⇒ P {P} C {Q}
{P ′} C {Q}

weaken postcondition

{P} C {Q} Q ⇒ Q ′

{P} C {Q ′}

Correctness obvious

Example needs strengthening: P ∧ x < 0⇒ −x == |x |
holds if P ≡ true!

similarly: P ∧ x ≥ 0⇒ x == |x |

(Software Engineering) Softwaretechnik June 29, 2011 34 / 40

Completed example:

D1 =
x < 0⇒ −x == |x | {−x == |x |} z = −x {z == |x |}

{x < 0} z = −x {z == |x |}

D2 =
x ≥ 0⇒ x == |x | {x == |x |} z = x {z == |x |}

{x ≥ 0} z = x {z == |x |}
D1

{x < 0} z = −x {z == |x |}
D2

{x ≥ 0} z = x {z == |x |}
{true} if x < 0 then z = −x else z = x {z == |x |}

(Software Engineering) Softwaretechnik June 29, 2011 35 / 40

While Rule

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

P is loop invariant

Example: try to prove

{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }

while sum <= a do

k = k+2;

i = i+1;

sum = sum+k

{ i*i <= a /\ a < (i+1)*(i+1) }

⇒ while rule not directly applicable . . .

(Software Engineering) Softwaretechnik June 29, 2011 36 / 40

While Rule

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==1

=>

i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1)

P ≡ i ∗ i ≤ a ∧ i ≥ 0 ∧ k == 2 ∗ i + 1 ∧ sum == (i + 1) ∗ (i + 1)
holds on entry to the loop

To prove that P is an invariant, requires to prove that
{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
It follows by the sequence rule and weakening:

(Software Engineering) Softwaretechnik June 29, 2011 37 / 40

Proof of loop invariance

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i>=0 /\ k+2==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

k = k+2

{ i>=0 /\ k==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i+1>=1 /\ k==2*(i+1)+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

i = i+1

{ i>=1 /\ k==2*i+1 /\ sum==i*i /\ sum<=a }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum+k==i*i+k /\ sum+k<=a+k }

sum = sum+k

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+k /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+2*i+1 /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a+k }

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) }

(Software Engineering) Softwaretechnik June 29, 2011 38 / 40

Step 2: Apply the while rule

{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
{P} while sum ≤ a do k = k + 2; i = i + 1; sum = sum + k {P ∧ sum > a}

Now, P ∧ sum > a is

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum>a }

implies

{ i*i<=a /\ a<(i+1)*(i+1) }

(Software Engineering) Softwaretechnik June 29, 2011 39 / 40

Properties of Formal Verification

requires more restrictions on assertions (e.g., use a certain logic) than
monitoring

full compliance of code with specification can be guaranteed

scalability is a challenging research topic:

full automatization
manageable for small/medium examples
large examples require manual interaction

(Software Engineering) Softwaretechnik June 29, 2011 40 / 40

