Road Map

(Software Engineering)

Softwaretechni

June 29, 2011

(Software Enginee

An Example

Inheritance and Dynamic Binding

class TABLE { int capacity; // size of table · Subclass may override a method definition // number of elements in table int count: Effect on specification: T get (String key) {...} void insert (T element, String key); Subclass may have different invariant } Redefined methods may have different pre- and postconditions raise different exceptions ⇒ method specialization Insert an element in a table of fixed size Precondition: table is not full

count < capacity

Postcondition: new element in table, count updated

```
count \le capacity
\land get(kev) = element
\land count = old count + 1
```

- Relation to invariant and pre-, postconditions in base class?
- Main guideline: No surprises requirement (Wing, FMOODS 1997) Properties that users rely on to hold of an object of type T should hold even if the object is actually a member of a subtype S of T.

(Software Engineering)	Softwaretechnik	June 29, 2011	5 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	6 / 40
Invariant of a Subclass				Method Specialization			

class MYTABLE extends TABLE ...

- · each property expected of a TABLE object should also be granted by a MYTABLE object
- · if o has type MYTABLE then INV TABLE must hold for o
- $\Rightarrow INV_{MYTABLE} \Rightarrow INV_{TABLE}$
- Example: MYTABLE might be a hash table with invariant

```
INV_MYTARLE = count < capacity/3
```

If MYTABLE redefines insert then

- · the new precondition must be weaker and
- · the new postcondition must be stronger

```
because in
```

```
TABLE cast = new MYTABLE (150);
```

cast.insert (new Terminator (3), "Arnie");

the caller

- guarantees only Preinsert TABLE
- expects Postinsert.TABLE

Requirements for Method Specialization

Example: MYTABLE.insert

- Suppose class T defines method m with assertions $\operatorname{Pre}_{T,m}$ and $\operatorname{Post}_{T,m}$ throwing exceptions $\operatorname{Exc}_{T,m}$. If class S extends class T and redefines m then the redefinition is a sound method specialization if
 - $\mathbf{Pre}_{T,m} \Rightarrow \mathbf{Pre}_{S,m}$ and
 - Post_{S,m} ⇒ Post_{T,m} and
 - $Exc_{S,m} \subseteq Exc_{T,m}$ each exception thrown by S.m may also be thrown by T.m

- $Pre_{MYTABLE.insert} \equiv count < capacity/3$ not a sound method specialization because it is not implied by count < capacity.
- MYTABLE may automatically resize the table, so that $Pre_{\text{WYTABLE, insert}} \equiv true$ a sound method specialization because count < capacity \Rightarrow true!
- Suppose MYTABLE adds a new instance variable T lastInserted that holds the last value inserted into the table.

is sound method specialization because $Post_{MYTABLE,insert} \Rightarrow Post_{TABLE,insert}$

(Software Engineering)	Softwaretechnik	June 29, 2011	9 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	10 / 40
Road Map			Roa	ad Map			

- · Contracts for object-oriented programs
- Contract monitoring
- Program verification
- Automatic program verification

· Contract monitoring

Contract Monitoring

What can go wrong?

- What happens if a system's execution violates an assertion at run time?
- A violating execution runs outside the system's specification.
- The system's reaction may be arbitrary
 - crash
 - continue
 - contract monitoring: evaluate assertions at runtime and raise an exception indicating any violation
- Why monitor?
 - Debugging (with different levels of monitoring)
 - Software fault tolerance (e.g., α and β releases)

precondition: evaluate assertion on entry identifies problem in the caller postcondition: evaluate assertion on exit identifies problem in the callee invariant: evaluate assertion on entry and exit problem in the callee's class hierarchy: unsound method specialization need to check (for all superclasses *T* of *S*) • **Pre**_{*T,m*} \Rightarrow **Pre**_{*S,m*} on entry and • **Post**_{*S,m*} \Rightarrow **Post**_{*T,m*} on exit how?

(Software Engineering)	Softwaretechnik	June 29, 2011	13 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	14 / 40
Hierarchy Checking				Examples			

Suppose	class	S	extends	Т	and	overrides	а	method	m.
Let T x	= new	S()	and consi	de	r <i>x.r</i>	n()			

- on entry
 - if Pre_{T,m} holds, then Pre_{S,m} must hold, too
 - Pres,m must hold
- on exit
 - Post_{S,m} must hold
 - if $\mathbf{Post}_{S,m}$ holds, then $\mathbf{Post}_{T,m}$ must hold, too
- in general: cascade of implications between S and T

```
interface IConsole {
    int getMaxSize();
    @post { getMaxSize > 0 }
    void display (String s);
    @pre { s.length () < this.getMaxSize() }</pre>
```

}

```
class Console implements IConsole {
    int getMaxSize () { ... }
    @post { getMaxSize > 0 }
    void display (String s) { ... }
    @pre { s.length () < this.getMaxSize() }</pre>
```

A Bad Extension

```
class PrefixedConsole extends Console {
                                                                      String getPrefix() {
class RunningConsole extends Console {
                                                                        return ">> ":
  void display (String s) {
                                                                      7
                                                                      void display (String s) {
    super.display
                                                                        super.display (this.getPrefix() + s);
         (String. substring (s, ..., + getMaxSize()))
                                                                      }
                                                                        @pre { s.length() <</pre>
  3
                                                                            this.getMaxSize() - this.getPrefix().length() }
    }

    caller may only guarantee IConsole's precondition

                                                                      • blame the programmer of PrefixedConsole!
                                                   June 29, 2011
                                                             17 / 40
                                                                                                                       June 29, 2011
                                                                                                                                18 / 40
Properties of Monitoring
                                                                   Road Map
```

- Assertions can be arbitrary side effect-free boolean expressions
- · Monitoring can only prove the presence of violations, not their absence
- · Absence of violations can only be guaranteed by formal verification
- Contracts for object-oriented programs
- Contract monitoring
- Program verification
- Automatic program verification

Road Map

Program verification

Verification of Contracts

 Given: Specification of imperative procedure by Precondition and Postcondition
 Goal: Formal proof for Precondition(State) ⇒ Postcondition(procedure(State))
 Method: Hoare Logic, i.e., a proof system for Hoare triples of the form
{Precondition} procedure {Postcondition}

- named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many other
- here: method bodies, no recursion, no pointers (extensions exist)

(Software Engineering)	Softwaretechnik	June 29, 2011	21 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	22 / 40
Syntax				Semantics — Dom	ains and Types		

Е, F В, P, Q С, D	::= ::= - ::=	$c \mid x \mid E + F \mid \dots$ $\neg B \mid P \land Q \mid P \lor Q$ $E = F \mid E \le F \mid \dots$ skip y = F	expressions boolean expressions statements	BValue IValue $\sigma \in State$	=	true false 0 1 Variable \rightarrow Value
		C;D if B then C else D while B do C	sequence conditional iteration	€ [] [] []	:	$\begin{array}{l} \textit{Expression} \times \textit{State} \rightarrow \textit{IValue} \\ \textit{BoolExpression} \times \textit{State} \rightarrow \textit{BValue} \\ \textit{State}_{\perp} \rightarrow \textit{State}_{\perp} \end{array}$
H	::=	{ <i>P</i> } <i>C</i> { <i>Q</i> }	Hoare triples	 State⊥ := State result ⊥ indicates 	J{⊥ s non	} -termination
 (boolean) e 	xpres	sions are free of side effe	cts			

$S[C] \perp$	=	\perp
$S[skip]\sigma$	=	σ
$S[x=E]\sigma$	=	$\sigma[x \mapsto \mathcal{E}[[E]]\sigma]$
$S[C;D]\sigma$	=	$S[D](S[C]\sigma)$
$\mathcal{S}[\![if B \text{ then } C \text{ else } D]\!]\sigma$	=	$\mathcal{B}\llbracket B \rrbracket \sigma = \texttt{true} \to \mathcal{S}\llbracket C \rrbracket \sigma \ , \ \mathcal{S}\llbracket D \rrbracket \sigma$
$S[while B do C]\sigma$	=	$F(\sigma)$
where $F(\sigma)$	=	$\mathcal{B}[\![B]\!]\sigma = true \rightarrow F(\mathcal{S}[\![C]\!]\sigma), \sigma$

(Software Engineering)	Softwaretechnik	June 29, 2011	25 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	26 / 40
Proving a Hoare triple			Pr	oof Rules for Hoare Tr	iples		

 $\{P\} \in \{Q\}$

- holds if $(\forall \sigma \in State) P(\sigma) \Rightarrow (Q(S[C]\sigma) \lor S[C]\sigma = \bot)$ (partial correctness)
- alternative reading: P, Q ⊆ State
 {P} C {Q} ≡ S[[C]]P ⊆ Q ∪ ⊥

- Proving that $\{P\} \in \{Q\}$ holds directly from the definition is tedious
- Instead: define axioms and inferences rules
- · Construct a derivation to prove the triple
- · Choice of axioms and rules guided by structure of C

$$\{P[x \mapsto E]\} x = E \{P\}$$

$$\{P\} \text{ skip } \{P\}$$

Examples:
• $\{1 = 1\} x = 1 \{x = 1\}$
• $\{odd(1)\} x = 1 \{odd(x)\}$
• $\{x = 2 * y + 1\} y = 2 * y \{x = = y + 1\}$

$$\frac{\{P\} C \{R\} \{R\} D \{Q\}}{\{P\} C; D \{Q\}}$$

Example:

$$\frac{\{x == 2 * y + 1\} \ y = 2 * y \ \{x == y + 1\}}{\{x == 2 * y + 1\} \ y = 2 * y ; y = y + 1 \ \{x == y\}}$$

$$\begin{array}{c|c} \{P \land B\} \ C \ \{Q\} & \{P \land \neg B\} \ D \ \{Q\} \\ \hline \{P\} \ \text{if} \ B \ \text{then} \ C \ \text{else} \ D \ \{Q\} \end{array}$$

Examples:

incomplete!

⇒ need logical rules

Logical Rules

strengthen precondition

$$\frac{P' \Rightarrow P \quad \{P\} \ C \ \{Q\}}{\{P'\} \ C \ \{Q\}}$$

weaken postcondition

$$\frac{\{P\} \ C \ \{Q\} \qquad Q \Rightarrow Q'}{\{P\} \ C \ \{Q'\}}$$

Correctness obvious

- Example needs strengthening: $P \land x < 0 \Rightarrow -x == |x|$
- holds if P = true!
- similarly: $P \land x \ge 0 \Rightarrow x == |x|$

(Software Engineering)	Softwaretechnik	June 29, 2011	33 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	34 / 40
				While Rule			

Completed example:

$$\begin{aligned} \mathcal{D}_1 &= \frac{x < 0 \Rightarrow -x = |x|}{\{x < 0\} \ z = -x} \frac{\{z = |x|\}}{\{z = -x\}} \\ \mathcal{D}_2 &= \frac{x \ge 0 \Rightarrow x = |x|}{\{x \ge 0\} \ z = -x} \frac{\{z = -|x|\}}{\{z = -x\}} \\ \frac{\mathcal{D}_2 &= \frac{x \ge 0 \Rightarrow x = |x|}{\{x \ge 0\} \ z = -x} \frac{\{z = -|x|\}}{\{z = -|x|\}} \\ \frac{\mathcal{D}_1}{\{x \ge 0\} \ z = -x} \frac{\{z = -|x|\}}{\{z = -x\}} \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\{z = -|x|\}}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\{z = -|x|\}}{\{z = -x\}} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{\{z = -|x|\}} \\ \frac{\mathcal{D}_2}{\{x \ge 0\} \ z = -x} \frac{\mathcal{D}_2}{$$

 $\frac{\{P \land x < 0\} \ z = -x \ \{z == |x|\}}{\{P\} \ \text{if } x < 0 \ \text{then } z = -x \ \text{else } z = x \ \{z == |x|\}}$

• precondition for z = -x should be $(z == |x|)[z \mapsto -x] \equiv -x == |x|$

$$\frac{\{P \land B\} C \{P\}}{\{P\} \text{ while } B \text{ do } C \{P \land \neg B\}}$$

• P is loop invariant

Example: try to prove

 \Rightarrow while rule not directly applicable ...

(Software Engineering)

Softwaretechnik

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==1 => i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1)

- *P* ≡ *i* ∗ *i* ≤ *a* ∧ *i* ≥ 0 ∧ *k* == 2 ∗ *i* + 1 ∧ sum == (*i* + 1) ∗ (*i* + 1) holds on entry to the loop
- To prove that P is an invariant, requires to prove that {P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
- . It follows by the sequence rule and weakening:

```
/\ k==2*i+1
                                     /\ sum==(i+1)*(i+1) /\ sum<=a }</pre>
{ i*i<=a /\ i>=0
£
             i>=0
                    ( k+2==2+2*i+1 / sum==(i+1)*(i+1) / sum<=a 
k = k+2
             i>=0 /\ k==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }
             i+1>=1 /\ k==2*(i+1)+1 /\ sum==(i+1)*(i+1) /\ sum<=a }
i = i+1
             i>=1
                    /\ k==2*i+1
                                      /\ sum==i*i
                                                           /\ sum<=a }
{ i*i<=a /\ i>=1
                   /\ k==2*i+1
                                     /\ sum+k==i*i+k
                                                           \land sum+k<=a+k }
sum = sum+k
{ i*i<=a /\ i>=1 /\ k==2*i+1
                                     /\ gum==i*i+k
                                                           / sum <= a+k 
{ i*i<=a /\ i>=1 /\ k==2*i+1
                                     /\ sum==i*i+2*i+1
                                                           /\ sum<=a+k }
\{i \neq i \leq a / \} i \geq 1 / k = 2 \neq i + 1
                                     \land sum==(i+1)*(i+1) \land sum<=a+k }
\{i*i \leq a / \} i \geq 0 / k = 2*i+1
                                      (1 \text{ sum} = (i+1)*(i+1)
```

(Software Engineering)	Softwaretechnik	June 29, 2011	37 / 40	(Software Engineering)	Softwaretechnik	June 29, 2011	38 / 40
				Properties of Formal V	erification		

Step 2: Apply the while rule

 $\frac{\{P \land sum \le a\} \ k = k + 2; \ i = i + 1; \ sum = sum + k \ \{P\}}{\{P\} \ \text{while } sum \le a \ \text{do } k = k + 2; \ i = i + 1; \ sum = sum + k \ \{P \land sum > a\}}$

Now, $P \wedge sum > a$ is

```
{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum>a } implies
```

{ i*i<=a /\ a<(i+1)*(i+1) }

- requires more restrictions on assertions (e.g., use a certain logic) than monitoring
- · full compliance of code with specification can be guaranteed
- scalability is a challenging research topic:
 - full automatization
 - manageable for small/medium examples
 - large examples require manual interaction