
Softwaretechnik
Design Patterns

Stephan Arlt

University of Freiburg

SS 2011

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 1 / 47

Design Patterns

Gamma, Helm, Johnson, Vlissides: Design Patterns, Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.1

recurring patterns of collaborating objects

practical knowledge from practicians (best practices)

developer’s vocabulary for communication

structuring of code (microarchitectures)

goals: flexibility, maintainability, communication, reuse

each pattern emphasizes certain aspects
flexibility vs. overhead, # objects

alternative approaches and combinations possible

task: which (combination of) pattern(s) is best

class-based ↔ object-based patterns

inheritance ↔ delegation

1Gang of Four
Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 2 / 47

Principles of design patterns

1 Do program against an interface, not again an implementation
I Many interfaces and abstract classes beside concrete classes
I Generic frameworks instead of direct solutions

2 Do prefer object composition instead of class inheritance
I Delegate tasks to helper objects

3 Decoupling
I Objects less interdependent
I Indirection as an instrument
I Additional helper objects

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 3 / 47

Object composition

Inheritance = White-box reuse

Reuse by inheritance

Inheritance is static

Internals of base classes are visible

Inheritance breaks encapsulation

Composition = Black-box reuse

Reuse by object composition

Needs well-formed interfaces for all objects

Internals of base classes are hidden

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 4 / 47

Delegation

Object composition is mighty as inheritance

Usage of delegation (indirection)

But
I More objects involved
I Explicit object references
I No this-pointers

Dynamic approach, hard to comprehend, maybe inefficient at runtime

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 5 / 47

Indirection

A recurring pattern found in all design patterns
I List x = new ArrayList(); // direct example
I List x = aListFactory.createList(); // indirect example

Indirection
I Object creation
I Method calls
I Implementation
I Complex algorithms
I Excessive coupling
I Extension of features

Do spend additional objects!

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 6 / 47

Indirection
Object creation

Coupling
I List x = new ArrayList();
I Implementation class is hard-wired
I Usage of implementation class instead interface
I Replacement of implementation class is hard

Decoupling
I List x = aListFactory.createList();
I Creates an object indirectly

Patterns: Abstract Factory, Factory Method, Prototype

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 7 / 47

Indirection
Method calls

Coupling
I Hard wiring of method calls
I No changes without compiling

Decoupling
I Objectification of methods
I Replaceable at runtime

Patterns: Chain of Responsibility, Command

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 8 / 47

Indirection
Implementation

Dependencies on hardware and software platforms
I External OS-API’s may vary
I Platform-independent systems as possible
I Patterns: Abstract Factory, Bridge

Dependencies on object representation or implementaion
I Clients know, how and where an object is represented, stored,

implemented, etc.
I Clients must be changed, even if the interfaces don’t change
I Patterns: Abstract factory, Bridge, Memento, Proxy

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 9 / 47

Indirection
Complex algorithms

Fixedness though hard-wiring
I Catching all cases of an algorithm

F Many conditional choices (if, then, else)
F Conditional choices by classes instead of if, then, else

I Changes, extensions, optimizations bring further conditional choices
I Decouple parts of algorithm that might change in the future

Flexibilization by decoupling additional algorithm objects

Patterns: Builder, Iterator, Strategy, Template Method, Visitor

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 10 / 47

Indirection
Excessive coupling

Too close coupled objects
I Leads to monolithic systems
I Single objects can’t be used isolated

Decoupling
I Additional helper objects

Patterns: Abstract Factory, Bridge, Chain of Responsibility,
Command, Facade, Mediator, Observer

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 11 / 47

Indirection
Extension of features

Coupling in class hierarchies
I Through inheritance
I Implementing a sub class needs knowledge of base class
I Isolated overriding of a method not possible
I Too many sub classes
I Decoupling by additional objects
I Patterns: Bridge, Chain of Responsibility, Composite, Decorator,

Observer, Strategy

When a class can’t be changed...
I No source code available
I Changes have to many effects
I Patterns: Adapter, Decorator, Visitor

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 12 / 47

Classification of Design Patterns

Purpose

Creational Patterns deal with object creation
Singleton, Abstract Factory, Builder, (and Factory Method,
Prototype)

Structural Patterns composition of classes or objects
Facade, Proxy, Decorator (and Adapter, Bridge, Flyweight,
Composite)

Behavioral Patterns interaction of classes or objects
Observer, Visitor, (and Command, Iterator, Memento, State,
Strategy)

Scope

Class static relationships between classes (inheritance)

Object dynamic relationships between objects

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 13 / 47

Standard Template

Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Known Uses

Related Patterns

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 14 / 47

Creational Patterns
Pattern: Singleton object, creational

Intent

class with exactly one object (global variable)

no further objects are generated

class provides access methods

Motivation

to create factories and builders

 instance = new Singleton();

return instance;

Singleton

Singleton()

instance()

if (instance == NULL)- instance

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 15 / 47

Structure

Applicability

exactly one object of a class required

instance globally accessible

Consequences

access control on singleton

structured address space (compared to global variables)

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 16 / 47

Pattern: Abstract Factory (Kit) object, creational

Intent

Provide an interface for creating families of related or dependent
objects without specifying their concrete classes

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 17 / 47

Motivation

user interface toolkit supporting multiple look-and-feel standards
e.g., Motif, Presentation Manager

PMWidget

MotifWindow

Client

MotifScrollbar

createScrollbar()

PMScrollbar

PMWindow

Factory

createScrollbar()

MotifWidget

Factory

createScrollbar()

createWindow() createWindow()

createWindow()

WidgetFactory

Window

Scrollbar

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 18 / 47

Structure

Client

ProductA2 ProductA1

ProductB2 ProductB1

ConcreteFactory2ConcreteFactory1

AbstractFactory

AbstractProductA

AbstractProductB

createProductB()

createProductA() createProductA()

createProductB()

createProductB()

createProductA()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 19 / 47

Applicability

independent of how products are created, composed, and represented

configuration with one of multiple families of products

related products must be used together

reveal only interface, not implementation

Consequences

product class names do not appear in code

exchange of product families easy

requires consistency among products

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 20 / 47

Pattern: Builder object, creational

Intent

Separate the construction of a complex object from its representation
so that the same construction process can create different
representations.

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 21 / 47

Motivation

read RTF and translate in different exchangeable formats

TextWidgetConverterTeXConverter

RTFReader
builder

convertChar(char)

convertCharset(Charset)

convertParagraph()

TextConverter

ASCIIConverter

getTeXText()

convertChar(char) convertChar(char)

convertCharset(Charset)
convert Char(char)

ParseRTF()

Builder

builder.convertCharset(t.Charset)

case CHARSET:

builder.convertChar(t.Char).

case CHAR:

 switch (t.Type) {

while (t = getToken()){

ASCIIText TeXText TextWidget

case PARAGRAPH:

 builder.convertParagraph()}}

getASCIIText()
convertCharset(Charset)

convertParagraph() convertParagraph()

getTextWidget()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 22 / 47

Structure

ConcreteBuilder

Builder

construct() constructPart()

constructPart()

for all objects in structure {

 builder.constructPart()}

getResult()

Director

builder

Product

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 23 / 47

Interaction Diagram for Builder

aConcreteBuilderaClient

new Director(aBuilder)

construct() constructPartA()

constructPartB()

constructPartC()

aDirector

new ConcreteBuilder()

getResult()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 24 / 47

Consequences

reusable for other directors (e.g. XMLReader)

Difference to Abstract Factory

Builder assembles a product step-by-step (parameterized over
assembly steps)

Abstract Factory returns complete product

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 25 / 47

Structural Patterns
Pattern: Facade object, structural

Intent
provide a unified interface to a set of interfaces in a subsystem

Motivation
compiler subsystem contains Scanner, Parser, Code generator, etc

Facade combines interfaces and offers new compile() operation

compile()

Compiler

Scanner

Parser

Token

Symbol

ProgramNode

StatementNode

ProgramNodeBuilder

Stream

BytecodeStream

CodeGenerator

RISCCodeGenerator

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 26 / 47

Applicability

simple interface to complex subsystem

many dependencies between clients and subsystem → Facade reduces
coupling

layering

Structure

Facade

client classes

subsystem classes

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 27 / 47

Consequences

shields clients from subsystem components

weak coupling: improves flexibility and maintainability

often combines operations of subsystem to new operation

with public subsystem classes: access to each interface

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 28 / 47

Pattern: Proxy (Surrogate) object, structural

Intent

control access to object

Motivation

multi-media editor loads images, audio clips, videos etc on demand

represented by proxy in document

proxy loads the “real object” on demand

:TextDocument

:ImageProxy :Image

in memory on disk

datafileName

image

___________ ______

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 29 / 47

Motivation (2)

image

return extent;

else return image.getExtent();

if (image == NULL)

image = loadImage(fileName);

if (image == NULL)

image.draw();

Image

DocumentEditor
draw()

getExtent()

store()

load()

draw()

getExtent()

store()

load()load()

store()

getExtent()

draw()

imageImp

extent extent

fileName

Graphic

ImageProxy

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 30 / 47

Structure

RealSubject

request()

...

Client
Subject

Proxy

request()

request()

...

...

realSubject ...

realSubject.request(); ...

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 31 / 47

Applicability

1 remote proxy communication with object on server (CORBA)
2 virtual proxy

I creates expensive objects on demand
I delays cost of creation and initialization

3 protection proxy controls access permission to original object

4 smart reference additional operations: reference counting, locking,
copy-on-write

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 32 / 47

Pattern: Decorator (Wrapper) object, structural

Intent

extend object’s functionality dynamically

more flexible than inheritance

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 33 / 47

Motivation

graphical object can be equipped with border and/or scroll bar

decorator object has same interface as the decorated object

decorated forwards requests

recursive decoration

component

:BorderDecorator

:TextView

component

:ScrollDecorator

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 34 / 47

Motivation (cont)

super.draw();

drawBorder();

TextView

ScrollDecorator BorderDecorator

draw() draw()

component

VisualComponent

draw()

Decorator

draw()

borderWidth

drawBorder()scrollTo()

draw()

scrollPosition

component.draw()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 35 / 47

Structure

super.operation();

addedBehavior();

component.operation()

Component

ConcreteComponent

component

operation()

operation()

Decorator

operation()

ConcreteDecoratorA

addedState

operation()

ConcreteDecoratorB

addedBehavior()

operation()

Applicability
dynamically add responsibilities to individual objects

for withdrawable responsibilities

when extension by inheritance is impractical

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 36 / 47

Consequences

more flexible than inheritance

avoids feature-laden classes high up in the hierarchy

decorator 6= component

lots of little objects → hard to learn and debug

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 37 / 47

Behavioral Patterns
Pattern: Observer object, behavioral

Intent

define 1 : n-dependency between objects

state-change of one object notifies all dependent objects

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 38 / 47

Motivation

maintain consistency between internal model and external views

25 2550

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 39 / 47

Structure

return subjectState;
getState()

setState()

for all o in observers {

state =

subject.getState();

attach(Observer)

detach(Observer)

Subject

notify()

observers
Observer

update()

ConcreteObserver

update()

state
subject

ConcreteSubject

o.update();

state

}

update()

update()
getState()

setState()

aConcrete

Subject

aConcrete

Observer

another

ConcreteObserver

getState()

notify()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 40 / 47

Applicability

objects with at least two mutually dependent aspects

propagation of changes

anonymous notification

Consequences

Subject and Observer are independent (abstract coupling)

broadcast communication

observers dynamically configurable

simple changes in Subject may become costly

granularity of update()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 41 / 47

Pattern: Visitor object, behavioral

Intent

represents operations on an object structure by objects

new operations without changing the classes

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 42 / 47

Motivation

processing of a syntax tree in a compiler: type checking, code
generation, pretty printing, . . .

naive approach: put operations into node classes → hampers
understanding and maintainability

here: realize each processing step by a visitor

without visitor

prettyPrint()

VariableRefNode AssignmentNode

typeCheck()

generateCode() generateCode()

typeCheck()

prettyPrint()

Node

typeCheck()

generateCode()

prettyPrint()

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 43 / 47

Syntax Tree with Visitors

NodeVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

TypeCheckingVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

CodeGeneratingVisitor

VisitAssignment(AssignmentNode)

VisitVariableRef(VariableRefNode)

v.visitVariableRef(this); b.visitAssignment(this);

Program

VariableRefNode

accept(NodeVisitor v) accept(NodeVisitor v)

AssignmentNode

Node

accept(NodeVisitor v)

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 44 / 47

Structure

v.visitConcreteElementA(this); v.visitConcreteElementB(this);

Visitor

visitConcreteElementA(ConcreteElementA)

visitConcreteElementB(ConcreteElementB)

accept(Visitor)

Client

ConcreteVisitor1

visitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

visitConcreteElementA(ConcreteElementA)

visitConcreteElementB(ConcreteElementB)

Element
ObjectStructure

ConcreteElementA

accept(Visitor v)

operationA() operationB()

accept(Visitor b)

ConcreteElementB

visitConcreteElementA(ConcreteElementA)

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 45 / 47

Visitor: Interaction Diagram

Visitor

aConcrete

operationA()

operationB()

aConcrete

ElementB

(aConcreteElementB)

visitConcreteElementB

anObject

Structure

aConcrete

ElementA

accept

(aVisitor)
visitConcreteElementA

(aConcreteElementA)

accept

(aVisitor)

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 46 / 47

Applicability

object structure with many differing interfaces; processing depends on
concrete class

distinct and unrelated operations on object structure

not suitable for evolving object structures

Consequences

adding new operations easy

visitor gathers related operations

adding new ConcreteElement classes is hard

visitors with state

partial breach of encapsulation

Stephan Arlt (University of Freiburg) Softwaretechnik SS 2011 47 / 47

