
Prof. Dr. Peter Thiemann
Stephan Arlt
Martin Wehrle Sommersemester 2011

Softwaretechnik
http://proglang.informatik.uni-freiburg.de/teaching/swt/2011/

Exercise Sheet 5

Exercise 1 (6 points)

The following Java class shows an implementation of queues in Java.

public class Queue {

protected int in,out;

protected Object[] buf;

public Queue (int anzahl) {

buf = new Object[anzahl];

}

public boolean empty() {

return in - out == 0;

}

public boolean full() {

return in - out == buf.length;

}

public void enqueue(Object o) {

buf[in % buf.length] = o;

in++;

}

public Object dequeue() {

Object o = buf[out % buf.length];

out++;

return o;

}

}

(i) Give reasonable pre- and postconditions for all methods and the constructor of the
Queue class. In particular, keep in mind that integers may overflow.

http://proglang.informatik.uni-freiburg.de/teaching/swt/2011/


(ii) A weak class invariant is defined as a condition that holds between calls to methods
of the class, but not during the execution of such methods. Are there any weak class
invariants for the Queue class?

Exercise 2 (6 points)

Consider the following Java class IntegerInterval that represents an interval of integer values.

class IntegerInterval {

int getLowerBound() { ... }

int getUpperBound() { ... }

void doSomething (int i) { ... }

}

The methods of the class IntegerInterval have the following specifications:

• getLowerBound(): requires: true; ensures: 0 <= getLowerBound() < getUpperBound()

• getUpperBound(): requires: true; ensures: 0 <= getLowerBound() < getUpperBound()

• doSomething (int i): requires: getLowerBound() <= i < getUpperBound(); en-
sures: true;

Consider the class Run that uses the IntegerInterval class as follows. The main method of
Run has the specification requires: true; ensures: true;

class Run {

public static void main (String[] a) {

int i = ...

IntegerIntervall c = ...

if (i >= 0 && i <= 10) {

c.doSomething(c.getLowerBound()+(c.getUpperBound()-c.getLowerBound())*i/10);

}

}

}

Analyze the code and identify contract violations that may occur during run-time.

Exercise 3 (6 points)

In the previous exercises, we have examined the specification of programs using pre- and
postconditions. In this exercise, we will use Pex, a tool from Microsoft Research that creates
a set of intelligent test cases. We will see that it is usually harder to understand the semantics
of a program if a set of test cases is given instead of a specification.



Familiarize yourself with Pex4Fun at http://www.pexforfun.com/. Provide code that
matches a secret implementation. Test your solution by asking Pex. Pex either returns
true if your solution is correct, or provides a counter-example for parameters for which your
solution fails.

1. Provide code that matches the implementation of Puzzle at http://goo.gl/t5SPC.
What does Puzzle compute? Hint: Consider the triangle example discussed in the
lecture.

2. Provide code that matches the implementation of Puzzle at http://goo.gl/SZVZS.
What does Puzzle compute?

http://www.pexforfun.com/
http://goo.gl/t5SPC
http://goo.gl/SZVZS

