Softwaretechnik

Program verification

UNI
1

FREIBURG

(Software Engineering)

Software Engineering
Albert-Ludwigs-University Freiburg

June 30, 2011

Softwaretechnik June 30, 2011

1/28

Road Map

@ Program verification
@ Automatic program verification

o Programs with loops
o Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 2/28

Road Map

@ Automatic program verification

o Programs with loops
o Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 3/28

Partial Correctness vs. Total Correctness

Two forms of properties.

Partial Correctness

@ For a given program p: if p terminates for given input /, then p's
output satisfies some relation with /.

Total Correctness
@ Partial correctness of p + termination

We focus on proving partial correctness.

(Software Engineering) Softwaretechnik June 30, 2011 4 /28

Proving Program Correctness: General Approach

Program annotation

@ Annotation @F at program location L asserts that formula F is true
whenever program control reaches L
@ Special annotation: function specification

o Precondition = specifies what should be true upon entering
o Postcondition = specifies what must hold after executing

v
Proving Program Correctness

@ Input: Program with annotations

@ Translate input to first order formula f

o Validity of f implies program correctness

(Software Engineering) Softwaretechnik June 30, 2011 5/28

Outline

@ Proving partial correctness

e Programs with loops
e Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 6 /28

Outline

@ Proving partial correctness
e Programs with loops

(Software Engineering) Softwaretechnik June 30, 2011 7 /28

Proving Partial Correctness

A function f is partially correct if
when f's precondition is satisfied on entry and f terminates,
then f's postcondition is satisfied.

@ A function + annotation is reduced to finite set of verification
conditions (VCs), FOL formulae

o If all VCs are valid, then the function obeys its specification (partially
correct)

@ Remark: Checking validity of formula requires special algorithms
(~ lecture on Decision Procedures)

(Software Engineering) Softwaretechnik June 30, 2011 8 /28

Programs with Loops

Loop invariants

@ Each loop has attendant annotation ©L called loop invariant
@ while loop: L must hold

e at the beginning of each iteration before the loop condition is evaluated
o for loop: L must hold

e after the loop initialization, and
o before the loop condition is evaluated

(Software Engineering) Softwaretechnik June 30, 2011 9 /28

Basic Paths: Loops

To handle loops, we break the function into basic paths.
Basic Path

@ < precondition or loop invariant

finite sequence of instructions
(with no loop invariants)

@ < loop invariant, assertion, or postcondition

(Software Engineering) Softwaretechnik June 30, 2011 10 / 28

Basic Paths: Loops

A basic path:

@ begins at the function pre condition or a loop invariant,
@ ends at the loop invariant or the function post,
@ does not contain the loop invariant inside the sequence,

@ conditional branches are replaced by assume statements.

v

Assume statement ¢

@ Remainder of basic path is executed only if ¢ holds

@ Guards with condition ¢ split the path (assume(c) and assume(—c))

v

(Software Engineering) Softwaretechnik June 30, 2011 11 /28

Example: LinearSearch

Qpre 0 < ¢ A u < |a
O@post rv <» Ji.l<i<u A a[il]=e
bool LinearSearch(int[] a, int ¢, int u, int e) {
for
OL: (<i AN (Vj.l<j<i — alj]#e)
(inti:=4¢ i<uwu i:=i+1){
if (a[i] = €) return true;
}

return false;

}

(Software Engineering) Softwaretechnik June 30, 2011

12 /28

Example: Basic Paths of LinearSearch

(1)
Opre 0 < /¢ A u < |a|
i={
OL: L<i ANVj.l<j<i — aj]#e
(2)

OL: UL<i ANVj.l<j<i — aj]#e
assume / < u;

assume a[i] = e;

rv = true;

O@post rv «» Jj. 0 <j<u A a[j]=¢e

(Software Engineering) Softwaretechnik June 30, 2011 13 /28

Example: Basic Paths of LinearSearch

(3)
OL: UL<i ANVj.L<j<i — aj]#e
assume / < u;

assume a[i] # e;

i=i+1;

OL: (<i AVjl<j<i — alj]#e

(4)
OL: L<i ANVj.l<j<i — aj]#e
assume / > Uu;
rv .= false;
@post rv «» Fj. £ <j<u A a[j]=¢e

(Software Engineering) Softwaretechnik June 30, 2011 14 /28

Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

(1)

S0

(2).(4)

(Software Engineering) Softwaretechnik June 30, 2011

15/ 28

Proving Partial Correctness

Goal

@ Prove that annotated function f agrees with annotations
@ Therefore: Reduce f to finite set of verification conditions VC

o Validity of VC implies that function behaviour agrees with annotations

Weakest precondition wp(F, S)

@ Informally: What must hold before executing statement S to ensure
that formula F holds afterwards?

e wp(F, S) = weakest formula such that executing S results in formula
that satisfies F

@ For all states s such that s = wp(F, S): successor state s’ = F.

(Software Engineering) Softwaretechnik June 30, 2011 16 / 28

Proving Partial Correctness

Computing weakest preconditions

@ Assumption: What must hold before statement assume c is executed
to ensure that F holds afterward?
wp(F, assume ¢) < ¢ — F

@ Assignment: What must hold before statement v := e is executed to
ensure that F[v] holds afterward?

wp(F[v], v:=e) & Fle]

(“substitute v with ")

o For sequence of statements Sy;...;S,,
wp(F, S1;...;Sn) < wp(wp(F, Sp), S1;...;Sn-1)

(Software Engineering) Softwaretechnik June 30, 2011 17 / 28

Proving Partial Correctness

Verification Condition

Verification Condition of basic path

Q@ F
Si;

Sn;
QG
is defined as

This verification condition is often denoted by the Hoare triple

{F}S1;...;5:,{G}

(Software Engineering) Softwaretechnik June 30, 2011 18 / 28

Proving Partial Correctness

Summary
@ Input: Annotated program
e Produce all basic paths P = {p1,...,pn}
e For all p € P: generate verification condition VC(p)
o Check validity of A ,.p VC(p)

Theorem
If /\p€P VC(p) is valid, then each function agrees with its annotation.

(Software Engineering) Softwaretechnik June 30, 2011 19 /28

Example 1: VC of basic path

(1)

©F: x>0
51 x:=x+1;
©G: x>1

The VCis
F — Wp(G, 51)
That is,
Wp(Ga 51)
< wp(x > 1, x :=x+1)
& (x> 1){x=x+1}
&S x+12>1
< x>0
Therefore the VC of path (1)
x>0 - x>0,
which is valid.

(Software Engineering) Softwaretechnik

June 30, 2011

20 / 28

Example 2: VC of basic path (2) of LinearSearch

2)
OL: F: U<i ANVjl<j<i — a]j]#e
S1: assume i < u;

Sy : assume a[i] = ¢;

S3: rv = true;

@post G: rv «» Fj.L<j<u A a[j]=ce

The VCis: F — wp(G, 51;52; 53)

That is,

wp(G, S1; 52; S3)

wp(wp(rv «» Fj. 0 <j<u A a[j] =e, rv:= true), 51;5)
wp(true < Fj. £<j<u A alj]=e, 51;5)

wp(Fj. £<j<u A a[j]=e, 51;5)

wp(wp(Fj. £ <j<u A a[j] =e, assume a[i] =e), 1)
wp(alil=e — Fj. £<j<u A alj]=¢e, 51)

wp(alil=e — Fj.0<j<u A a[j]=e, assume i < u)
i<u — (alil=e — Fj.L<j<u A aj]=¢)

(Software Engineering) Softwaretechnik June 30, 2011

NN I A

21 /28

Outline

@ Proving partial correctness

e Programs with loops
e Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 22 /28

Outline

@ Proving partial correctness

e Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 23 /28

Basic Paths: Recursive Function Calls

@ Loops produce unbounded number of paths
loop invariants cut loops to produce
finite number of basic paths

@ Recursive calls produce unbounded number of paths
function specifications cut function calls

Function specification

@ Add function summary for each function call

@ Replace pre- and postcondition with parameters of recursive call

(Software Engineering) Softwaretechnik June 30, 2011

24 / 28

Example: BinarySearch

The recursive function BinarySearch searches subarray of sorted array a of
integers for specified value e.

sorted: weakly increasing order, i.e.
sorted(a, l,u) < Vi,j. ¢ <i<j<u — a[i] <a[j]

Function specifications

e Function postcondition (@post)
It returns true iff a contains the value e in the range [/, u]

e Function precondition (@pre)
It behaves correctly only if 0 < ¢ and u < |3

(Software Engineering) Softwaretechnik June 30, 2011 25 /28

Example: BinarySearch

@pre 0 < /¢ A u<|a] A sorted(a,?, u)
Q@post rv <» Ji. £<i<u A a[i]=e
bool BinarySearch(int|[] a, int ¢, int u, int e) {
if (¢ > u) return false;
else {
int m = ({ + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a,m+ 1, u, e);
else return BinarySearch(a, ¢, m — 1, e);
}
}

(Software Engineering) Softwaretechnik June 30, 2011

26 / 28

Example: Binary Search with Function Call Assertions

Opre 0 < /¢ A u<|a] A sorted(a,?, u)
Q@post rv <» Ji. {<i<u A a[il]=e
bool BinarySearch(int[] a, int ¢, int u, int e) {
if (¢ > u) return false;
else {
int m:= ({ + u) div 2;
if (a[m] = e) return true;
else if (a[m] <e) {
@pre 0<m+1 A u<|a| A sorted(a,m+ 1, u);
bool tmp := BinarySearch(a, m+ 1, u, e);
@post tmp <+ Ji.m+1<i<u A a[i] =e, return tmp;
} else {
@pre 0</¢ A m—1<|a] A sorted(a,?,m—1);
bool tmp := BinarySearch(a,/,m — 1, e);
@post tmp <> Ji. L<i<m-—1 A a[i] =e;
return tmp;

(Software Engineering) Softwaretechnik June 30, 2011 27 / 28

Summary

Specification and verification of sequential programs

@ Program specification

o Assertions

o Including function preconditions, postconditions, loop invariants, ...
@ Partial correctness

e Qpre + termination = @post
o Notion of weakest preconditions and verification conditions

Not discussed (so far): Total correctness

o Additionally guarantees function termination

(Software Engineering) Softwaretechnik June 30, 2011 28 /28

