
Softwaretechnik
Program verification

Software Engineering
Albert-Ludwigs-University Freiburg

June 30, 2011

(Software Engineering) Softwaretechnik June 30, 2011 1 / 28

Road Map

Program verification

Automatic program verification

Programs with loops
Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 2 / 28

Road Map

Program verification

Automatic program verification

Programs with loops
Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 3 / 28

Partial Correctness vs. Total Correctness

Two forms of properties.

Partial Correctness

For a given program p: if p terminates for given input I , then p’s
output satisfies some relation with I .

Total Correctness

Partial correctness of p + termination

We focus on proving partial correctness.

(Software Engineering) Softwaretechnik June 30, 2011 4 / 28

Proving Program Correctness: General Approach

Program annotation

Annotation @F at program location L asserts that formula F is true
whenever program control reaches L

Special annotation: function specification

Precondition = specifies what should be true upon entering
Postcondition = specifies what must hold after executing

Proving Program Correctness

Input: Program with annotations

Translate input to first order formula f

Validity of f implies program correctness

(Software Engineering) Softwaretechnik June 30, 2011 5 / 28

Outline

Proving partial correctness

Programs with loops
Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 6 / 28

Outline

Proving partial correctness

Programs with loops

Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 7 / 28

Proving Partial Correctness

Recall

A function f is partially correct if
when f ’s precondition is satisfied on entry and f terminates,
then f ’s postcondition is satisfied.

A function + annotation is reduced to finite set of verification
conditions (VCs), FOL formulae

If all VCs are valid, then the function obeys its specification (partially
correct)

Remark: Checking validity of formula requires special algorithms
(; lecture on Decision Procedures)

(Software Engineering) Softwaretechnik June 30, 2011 8 / 28

Programs with Loops

Loop invariants

Each loop has attendant annotation @L called loop invariant

while loop: L must hold

at the beginning of each iteration before the loop condition is evaluated

for loop: L must hold

after the loop initialization, and
before the loop condition is evaluated

(Software Engineering) Softwaretechnik June 30, 2011 9 / 28

Basic Paths: Loops

To handle loops, we break the function into basic paths.

Basic Path

@ ← precondition or loop invariant

finite sequence of instructions
(with no loop invariants)

@ ← loop invariant, assertion, or postcondition

(Software Engineering) Softwaretechnik June 30, 2011 10 / 28

Basic Paths: Loops

A basic path:

begins at the function pre condition or a loop invariant,

ends at the loop invariant or the function post,

does not contain the loop invariant inside the sequence,

conditional branches are replaced by assume statements.

Assume statement c

Remainder of basic path is executed only if c holds

Guards with condition c split the path (assume(c) and assume(¬c))

(Software Engineering) Softwaretechnik June 30, 2011 11 / 28

Example: LinearSearch

@pre 0 ≤ ` ∧ u < |a|
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i] = e
bool LinearSearch(int[] a, int `, int u, int e) {
for

@L : ` ≤ i ∧ (∀j . ` ≤ j < i → a[j] 6= e)
(int i := `; i ≤ u; i := i + 1) {
if (a[i] = e) return true;
}
return false;
}

(Software Engineering) Softwaretechnik June 30, 2011 12 / 28

Example: Basic Paths of LinearSearch

(1)
@pre 0 ≤ ` ∧ u < |a|
i := `;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e

(2)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e
assume i ≤ u;
assume a[i] = e;
rv := true;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j] = e

(Software Engineering) Softwaretechnik June 30, 2011 13 / 28

Example: Basic Paths of LinearSearch

(3)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e
assume i ≤ u;
assume a[i] 6= e;
i := i + 1;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e

(4)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e
assume i > u;
rv := false;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j] = e

(Software Engineering) Softwaretechnik June 30, 2011 14 / 28

Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

@pre

L

@post

(1)

(2),(4)

(3)

(Software Engineering) Softwaretechnik June 30, 2011 15 / 28

Proving Partial Correctness

Goal

Prove that annotated function f agrees with annotations

Therefore: Reduce f to finite set of verification conditions VC

Validity of VC implies that function behaviour agrees with annotations

Weakest precondition wp(F , S)

Informally: What must hold before executing statement S to ensure
that formula F holds afterwards?

wp(F , S) = weakest formula such that executing S results in formula
that satisfies F

For all states s such that s |= wp(F , S): successor state s ′ |= F .

(Software Engineering) Softwaretechnik June 30, 2011 16 / 28

Proving Partial Correctness

Computing weakest preconditions

Assumption: What must hold before statement assume c is executed
to ensure that F holds afterward?

wp(F , assume c) ⇔ c → F

Assignment: What must hold before statement v := e is executed to
ensure that F [v] holds afterward?

wp(F [v], v := e) ⇔ F [e]

(“substitute v with e”)

For sequence of statements S1; . . . ; Sn,
wp(F , S1; . . . ; Sn) ⇔ wp(wp(F , Sn), S1; . . . ;Sn−1)

(Software Engineering) Softwaretechnik June 30, 2011 17 / 28

Proving Partial Correctness

Verification Condition

Verification Condition of basic path

@ F
S1;
. . .
Sn;
@ G

is defined as

F → wp(G , S1; . . . ; Sn)

This verification condition is often denoted by the Hoare triple

{F}S1; . . . ; Sn{G}

(Software Engineering) Softwaretechnik June 30, 2011 18 / 28

Proving Partial Correctness

Summary

Input: Annotated program

Produce all basic paths P = {p1, . . . , pn}
For all p ∈ P: generate verification condition VC (p)

Check validity of
∧

p∈P VC (p)

Theorem
If
∧

p∈P VC (p) is valid, then each function agrees with its annotation.

(Software Engineering) Softwaretechnik June 30, 2011 19 / 28

Example 1: VC of basic path

(1)
@ F : x ≥ 0
S1 : x := x + 1;
@ G : x ≥ 1

The VC is
F → wp(G , S1)

That is,
wp(G , S1)
⇔ wp(x ≥ 1, x := x + 1)
⇔ (x ≥ 1){x Z⇒ x + 1}
⇔ x + 1 ≥ 1
⇔ x ≥ 0

Therefore the VC of path (1)
x ≥ 0 → x ≥ 0 ,

which is valid.

(Software Engineering) Softwaretechnik June 30, 2011 20 / 28

Example 2: VC of basic path (2) of LinearSearch

(2)
@L : F : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j] 6= e
S1 : assume i ≤ u;
S2 : assume a[i] = e;
S3 : rv := true;
@post G : rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j] = e

The VC is: F → wp(G , S1; S2;S3)

That is,
wp(G , S1; S2;S3)
⇔ wp(wp(rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j] = e, rv := true), S1;S2)
⇔ wp(true ↔ ∃j . ` ≤ j ≤ u ∧ a[j] = e, S1;S2)
⇔ wp(∃j . ` ≤ j ≤ u ∧ a[j] = e, S1;S2)
⇔ wp(wp(∃j . ` ≤ j ≤ u ∧ a[j] = e, assume a[i] = e), S1)
⇔ wp(a[i] = e → ∃j . ` ≤ j ≤ u ∧ a[j] = e, S1)
⇔ wp(a[i] = e → ∃j . ` ≤ j ≤ u ∧ a[j] = e, assume i ≤ u)
⇔ i ≤ u → (a[i] = e → ∃j . ` ≤ j ≤ u ∧ a[j] = e)

(Software Engineering) Softwaretechnik June 30, 2011 21 / 28

Outline

Proving partial correctness

Programs with loops
Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 22 / 28

Outline

Proving partial correctness

Programs with loops

Programs with recursive function calls

(Software Engineering) Softwaretechnik June 30, 2011 23 / 28

Basic Paths: Recursive Function Calls

Loops produce unbounded number of paths
loop invariants cut loops to produce
finite number of basic paths

Recursive calls produce unbounded number of paths
function specifications cut function calls

Function specification

Add function summary for each function call

Replace pre- and postcondition with parameters of recursive call

(Software Engineering) Softwaretechnik June 30, 2011 24 / 28

Example: BinarySearch

The recursive function BinarySearch searches subarray of sorted array a of
integers for specified value e.

sorted: weakly increasing order, i.e.

sorted(a, `, u) ⇔ ∀i , j . ` ≤ i ≤ j ≤ u → a[i] ≤ a[j]

Function specifications

Function postcondition (@post)
It returns true iff a contains the value e in the range [`, u]

Function precondition (@pre)
It behaves correctly only if 0 ≤ ` and u < |a|

(Software Engineering) Softwaretechnik June 30, 2011 25 / 28

Example: BinarySearch

@pre 0 ≤ ` ∧ u < |a| ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (` + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a,m + 1, u, e);
else return BinarySearch(a, `,m − 1, e);
}
}

(Software Engineering) Softwaretechnik June 30, 2011 26 / 28

Example: Binary Search with Function Call Assertions

@pre 0 ≤ ` ∧ u < |a| ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (` + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) {

@pre 0 ≤ m + 1 ∧ u < |a| ∧ sorted(a,m + 1, u);
bool tmp := BinarySearch(a,m + 1, u, e);
@post tmp ↔ ∃i . m + 1 ≤ i ≤ u ∧ a[i] = e; return tmp;
} else {

@pre 0 ≤ ` ∧ m − 1 < |a| ∧ sorted(a, `,m − 1);
bool tmp := BinarySearch(a, `,m − 1, e);
@post tmp ↔ ∃i . ` ≤ i ≤ m − 1 ∧ a[i] = e;
return tmp;
}
}
}

(Software Engineering) Softwaretechnik June 30, 2011 27 / 28

Summary

Specification and verification of sequential programs

Program specification

Assertions
Including function preconditions, postconditions, loop invariants, . . .

Partial correctness

@pre + termination ⇒ @post
Notion of weakest preconditions and verification conditions

Not discussed (so far): Total correctness

Additionally guarantees function termination

(Software Engineering) Softwaretechnik June 30, 2011 28 / 28

