Object-Oriented Analysis

v

After introduction of OOP: need for OOA and OOD
Purpose: Building OO models of software systems
No generally accepted methodology; many different approaches:

Booch, Rumbaugh (OMT), Coad/Yourdon, Jacobson (OOSE),
Wirfs-Brock, ...

Current approaches rely on UML (Unified Modeling Language,
Booch/Jacobson/Rumbaugh)

UML supports many kinds of semi-formal modeling techniques
use case diagrams

v

Softwaretechnik
Lecture 04: Object-Oriented Analysis

v

v

Peter Thiemann

University of Freiburg, Germany

v

v

SS 2011

class diagrams
sequence diagrams
statechart diagrams
activity diagrams
deployment diagrams

vYyvovy

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 1/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik swt

The Concept “Model” Variations of Models

(according to Herbert Stachowiak, 1973)

Informal models

. > informal syntax, intuitive semantics

Representation i X X -
A model is a representation of an original object. » ex: informal drawing on blackboard, colloquial description
Abstraction

Semi-formal models
A model need not encompass all features of the original object.

» formally defined syntax (metamodel), intuitive semantics

Pragmatism > ex: many diagram types of UML

A model is always goal-oriented.
» Modeling creates a representation that only encompasses the relevant Formal models
features for a particular purpose. » formally defined syntax and semantics

> ex: logical formulae, phrase structure grammars, programs

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 3/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik swT

Class Diagram (UML) Classes

. . A class box has compartments for

» Data-oriented view, cf. ERD
> Class name

Attributes (variables, fields)

Operations (methods)

> Representation of classes and their static relationships

v

» No information on dynamic behavior

v

» Notation is graph with
» nodes: classes (rectangles)
» edges: various relationships between classes

v

only name compartment obligatory
» May contain interfaces, packages, relationships, as well as instances > additional compartments may be defined
(objects, links)

v

class (static) attributes / operations underlined

Peter Thiemann (Univ, Freiburg) Softwartechnik SWT 5/3 Peter Thiemann (Univ. Freiburg) Softwaretechnik
Relations Between Classes Example Class Diagram
Binary Association doss
dassname —or-
> indicates “collaboration” between two classes (possibly reflexive) Ll s e
atibutel
» solid line between two classes attribute2: Typ = default
> optional: Iderived attribute
» association name abstractOperation1()
» decoration with role names op2(parmList): result type- -~ --|
> navigation (Design)
» multiplicities (Design) inheritance
o]
. JAN JAN
Generalization
Ca] [Cawme] [Be]
> indicates subclass relation
o R , asciation
» solid line with open arrow towards super class Clas1 |- —o_das2

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 7/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik

Example Class Diagram

Py product manu'aaurs; T
subpart pertno order orderer
o1 :
superpart

Peter Thiemann (Univ. Freiburg)

Step: Identify Classes

Softwaretechnik

>
organizational units (company)
» top-down: scan verbal requirements
> nouns — objects, attributes
> verbs — operations
bottom-up:
> collect attributes (data) and operations
> combine into classes
>
>

Peter Thiemann (Univ. Freiburg)

classes related via invariable 1:1 associations may be joined

Softwaretechnik

identify tangible entities: physical objects (airplane), roles (manager),
events (request, form), interactions (meeting), locations (office),

name of class: concrete noun, singular, describes all objects (no roles)

swT

1/36

Ten Steps Towards an OOA Model

Heide Balzert

© 0 NG AW N

. Data analysis: identify classes

Identify associations and compositions

. Identify attributes and operations for each class
. Construct object life cycle

. Introduce inheritance

. Identify internal operations

. Specify operations

. Check inheritance

. Check associations and compositions

. Decompose in subsystems

Peter Thiemann (Univ. Freiburg) Softwaretechnik

Step: Identify Associations and Compositions

v

v

v

v

v

v

v

v

v

permanent relations between objects

scan verbal requirements for verbs

technical subsidiarity: composition
communication between objects — association
determine roles

snapshot / history required?

constraints?

are there attributes / operations for association?
determine cardinalities

Peter Thiemann (Univ. Freiburg) Softwaretechnik

swT

SWT

10/36

12/36

Attributes and Operations by Form Analysis Step: Identify Attributes and Operations

Upload new Good Good

Kame ;";e CRC Cards (Wirfs-Brock)
Picture Browse... description

» CRC = Class-Responsibility-Collaboration

Description category
status > initially, a class is assigned responsibilities and collaborators
> collaborator is a class cooperating to fulfil responsibilities
display() » three-four responsibilities per card (class); otherwise: split class
edit) > developed iteratively through series of meetings

Categary | Choose Onel =|

Auction off? & g

Wi Submit

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 13/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 14/36

Example CRC Card Classes From Use Cases

Use Case: buy product

dassname .

it > Locate product in catalogue
check ifon stock item » Browse features of product
deamineprice item . .
check payment customer » Place product in shopping cart
o > Proceed to checkout

I I .
» Enter payment info
reponstiies collaborators

» Enter shipping info
> Confirm sale

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 15/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 16/36

F# Notation for Datatypes Classes from Requirements

type sale = { cart: shoppingCart;
shipment: shipmentInfo;
payment: paymentInfo }

and shoppingCart = { contents: product list } A graphics program should draw different geometric shapes in
and shipmentInfo = { name: string; a coordinate system. There are four kinds of shapes:

address: string } > Rectangles given by upper left corner, width, and height
and paymentInfo = { accountNr: string; > Disks given by center point and radius

bankingCode: string } » Points
and product = { name: string;

price: int; » Overlays composed of two shapes
features: feature list }
and feature = { name: string }

» Named record types

Peter Thiemann (Uriv. Freiburg) Sofiwaretechrik SWT 17/3 Peter Thiemann (Univ. Freiburg) Softwaretechrik Swr o 18/3
Classes from Requirements Mapping from F# Types to Class Diagrams
Mapping a type definition
type cartPt = { x: int; y: int } [type tdefy and ... and tdef,] = [tdef1] U - U [tdef ,]
and shape =
Rectangle of rectangle Mapping a record type
| Disk of disk [Ciame |
| Point of point [tname = {x; : t;, y; : tname;}] = Lo |

| Overlay of overlay
and rectangle = { loc: cartPt; width: int; height: int }

and disk = { loc: cartPt; radius: int } tname_1 tname_n

and point = { loc: cartPt } Mapping a sum type

and overlay = { lower: shape; upper: shape } W
[tname =Ty of ty |-+ | T, of t,] =)

> Sum type (shape) for alternatives

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 19/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 20/36

Applied to Example Code ... Operations

Class Diagram

Shape A graphics program should draw different geometric shapes

‘ » Each class should have a draw() operation

[— [—— - > Shape should also have draw() operation

]
I | O . " B "
I | feonn i“" . J‘ i | » Discovered the “Composite Pattern”!

Peter Thiemann (Univ, Freburg) Softaretechnik SWT 21/3 Peter Thiemann (Univ. Freburg) Softwaretechnik Wt 2%
Example Code with Draw Method Step: Construct Object Life Cycle
Clase Dingram

Object Life Cycle

» Object creation

w > Initialization

> Finalization

‘ ‘ ‘ » Object destruction
[—— T Diok.] [owny]
I | e | ey |
[= = =
v

Life Cycle — Type State

» operations can only be executed in particular state

> idea: incoming message (in class diagram) = event (in a statechart
diagram) that triggers the operation

Cart

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 23/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 24/36

Example: Java lterator — Statechart Diagram Statechart Diagram

interface Iterator<E> {
/** Returns true if the iteration has more elements. */
public boolean hasNext();

/** Returns the next element in the iteration. */ > Modeling the evolving state of an object

public E next(; ; . » Based on deterministic finite automaton (FSA)
/** Removes from the underlying collection the last element A= (Q,%.6,q0, F) where
returned by the iterator (optional operation). */ o fi t 't’ fo,t -
ublic void remove(); Inite set of states
P %: finite input alphabet

5 Q@ x ¥ — Q@ transition function
qo € Q initial state
F C Q set of final states

hasNext()

hasNext(=false

hasNext(=false

hasNext()

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 25/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik

Graphical Representation of FSA Example: Digital Clock as a Mealy-automaton

» nodes: states of the automaton (circles or rectangles)

button 1 pressed/ button 1 pressed/

hours flashing display time

> arrow pointing to qo

» final states indicated by double circle

» edges: if §(q,a) = ¢’ then transition labeled a from q to ¢’ uton’2 pressd
ncrease hours

button 2 pressed/
reset seconds

FSA with output specifies a translation ©* — A*
> M=(Q.X,A,5 X\ q)

> replace final states F by output alphabet A and output function A
button 1 pressed outton 1 presset

» Mealy-automaton: A\: Q@ X ¥ — A ‘minutes flashing s lashing
edge from q to 6(q, a) additionally carries A(q, a)
> Moore-automaton: A: Q — A incres s

state q labeled with A(q) Drawback: FSAs get big too quickly — structuring required

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 27/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik

Statechart Diagram (Harel, UML) Example: Statechart Diagram

event 1/

v

hybrid automata (“Moore + Mealy")
each state may have

entry action: executed on entry to state
= labeling all incoming edges

exit action: executed on exit of state

2 labeling all outgoing edges

do activity:

executed while in state

v

v

eventd

v

include/ submachine_invocation

v

v

composite states

v

states with history ticketinserted/ | timeout/

aisplay amount | release coins

v

concurrent states

v

optional: conditional state transitions

coin inserted (enoughy/ <ol Inserted (not enoughi/
print card display remaining am

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 29/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 30/36

Composite States States with History

v

states can be grouped into a composite state with designated start

node (— hierarchy)
> composite state with history — marked (H) — remembers the

internal state on exit and resumes in that internal state on the next
entry

v

edges may start and end at any level

v

transition from a composite state =
set of transitions with identical labels from all members of the
composite state

v

transition to a composite state leads to its initial state

v

transitions may be “stubbed”

v

the history state indicator may be target of transitions from the
outside and it may indicate a default “previous state”

> “deep history” (H*) remembers nested state

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 31/36 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 32/36

Concurrent States

» composite state may contain concurrent state regions
(separated by dashed lines)

v

all components execute concurrently

v

transitions may depend on state of another component
(synchronisation)

v

explicit synchronization points

v

concurrent transitions

sequence of states on input abcb:
(A, €), (B, D), (B,D), (B, C), (A, C)

Peter Thiemann (Univ. Freiburg)

Step: Introduce Inheritance

> Use sparingly!
> Use inheritance for abstracting common patterns:
Collect common attributes and operations in abstract superclass

> Alternative: collect in separate class and use composition

Peter Thiemann (Univ. Freiburg) Softwaretechnik swT

Softwaretechnik SWT 33/36

35 /36

Alternative: Sequence Diagram

» description of the sequence of messages

» — communications protocols

time

Class20 :
messagel T mesage2 |
message
responsel
message30) !

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 34/36

Step: Specify Operations

» Data-driven development: [Jackson]
Derive structure of operation from data it operates on
> Test-driven development: [Beck]
Specify a set of meaningful test cases
» Design by contract: [Meyer]
» Define class invariants
» Specify operations by pre- and postconditions
» Pseudocode Programming Process (PPP): [McConnell]
» Start with high-level pseudocode
» Refine pseudocode until implementation obvious

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 36/36

