
Software Engineering
Testing and Debugging — Overview

Prof. Dr. Peter Thiemann

Universität Freiburg

01.06.2011

Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell

Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell

Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell



Cost of Software Errors

$ 60 billion

estimated cost of software errors for US economy per year [NIST
2002]

Cost of Software Errors

$ 60 billion
estimated cost of software errors for US economy per year [NIST

2002]

Cost of Software Errors

$ 240 billion

size of US software industry [2002]

incl. profit, sales, marketing, development (50% maybe)

Cost of Software Errors

$ 240 billion
size of US software industry [2002]

incl. profit, sales, marketing, development (50% maybe)



Cost of Software Errors

$ 240 billion
size of US software industry [2002]

incl. profit, sales, marketing, development (50% maybe)

Cost of Software Errors

estimated

50%

of each software project spent on testing

(spans from 30% to 80%)

Cost of Software Errors

estimated

50%
of each software project spent on testing

(spans from 30% to 80%)

Cost of Software Errors

estimated

50%
of each software project spent on testing

(spans from 30% to 80%)



Cost of Software Errors

very rough approximation

money cost of
spent on ≈ remaining
testing errors

Cost of Software Errors

very rough approximation

money cost of
spent on + remaining
testing errors

=

50% of size of software
industry

Cost of Software Errors

very rough approximation

money cost of
spent on + remaining
testing errors

=

50% of size of software
industry

Brainstorming on Lecture Title

Collect opinions on:

I What is Testing?

I What is Debugging?



A Quiz

A simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tells whether the triangle is

Scalene: no two sides are equal

Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Create a Set of Test Cases for this Program

A Quiz

A simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tells whether the triangle is

Scalene: no two sides are equal

Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Create a Set of Test Cases for this Program

Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c

Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle?

(a,b,c) with a > b + c

Define valid triangles: a ≤ b + c



Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c

Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c

Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b

Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b



Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b

Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b

Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b

Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b



Solution — 1 Point for each Correct Answer

Q 4: some permutations of previous (2,2,4), (2,4,2)

Solution — 1 Point for each Correct Answer

Q 5: (3,4,5) a valid scalene triangle

4

5
3

Solution — 1 Point for each Correct Answer

Q 6: (3,3,3) an equilateral triangle

3

3

3

Solution — 1 Point for each Correct Answer

Q 7: (3,4,3) valid isosceles t.

3 3

4



Solution — 1 Point for each Correct Answer

Q 8: all permutations of valid isosceles triangle:

(3,4,3), (3,3,4), (4,3,3)

Solution — 1 Point for each Correct Answer

Q 9: one side with zero value (0,4,3)

Solution — 1 Point for each Correct Answer

Q 10: one side with negative value (-1,4,3)

Solution — 1 Point for each Correct Answer

Q 11: all sides zero (0,0,0)



Solution — 1 Point for each Correct Answer

Q 12: at least one value is non-integer (1,3,2.5)

Solution — 1 Point for each Correct Answer

Q 13: wrong number of arguments (2,4) or (1,2,3,3)

Solution — 1 Point for each Correct Answer

Q 14 (the most important one):

Did you specify the expected output in each case?

About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average



About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average

First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson: 35% of code is test cases!

First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson: 35% of code is test cases!

First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson: 35% of code is test cases!



First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson: 35% of code is test cases!

What is a Bug?

Basic Terminology

Harvard University, Mark II Aiken Relay Calculator

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today

Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by

a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today

Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today

Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today

Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!

Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!

Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification?



Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Is this a good specification?

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Is this a good specification?

sort({2, 1, 2}) == {1, 2, 2, 17} 8

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers

Ensures: returns a sorted array with only elements from
a



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers

Ensures: returns a sorted array with only elements from
a

sort({2, 1, 2}) == {1, 1, 2} 8

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

sort(null) throws NullPointerException 8

Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is a non-null array of integers
Ensures: returns a permutation of a that is sorted



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is a non-null array of integers

Ensures: returns the unchanged reference a containing
a permutation of the old contents of a that is
sorted

The Contract Metaphor

Contract is preferred specification metaphor for procedural and
OO PLs

first propagated by B. Meyer, Computer 25(10)40–51, 1992

Same Principles as Legal Contract between a Client and
Supplier

Supplier aka Implementer, in Java, a class or method

Client Mostly a caller object, or human user for main()

Contract One or more pairs of ensures/requires clauses
defining mutual obligations of client and implementer

The Meaning of a Contract

Specification (of method C::m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C::m() fulfills the required Precondition, then the
class C ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C::m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C::m() is
executed.”

The Meaning of a Contract

Specification (of method C::m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C::m() fulfills the required Precondition, then the
class C ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C::m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C::m() is
executed.”



Specification, Failure, Correctness

Define precisely what constitutes a failure

A method fails whenever it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state
fulfilling the postcondition to be ensured.

Non-termination, abnormal termination considered as failures here

Define precisely what correctness means

A method is correct if in all cases when it is started in a state
fulfilling the required precondition it terminates in a state fulfilling
the postcondition to be ensured.

This amounts to proving Absence of Failures!

Specification, Failure, Correctness

Define precisely what constitutes a failure

A method fails whenever it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state
fulfilling the postcondition to be ensured.

Non-termination, abnormal termination considered as failures here

Define precisely what correctness means

A method is correct if in all cases when it is started in a state
fulfilling the required precondition it terminates in a state fulfilling
the postcondition to be ensured.

This amounts to proving Absence of Failures!

Testing vs Verification

TESTING
Goal: find evidence for presence of failures

Testing means to execute a program with the intent of detecting
failure

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures

Testing cannot guarantee correctness, i.e., absence of failures

Related techniques: code generation, program synthesis (from spec)

Testing vs Verification

TESTING
Goal: find evidence for presence of failures

Testing means to execute a program with the intent of detecting
failure

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures

Testing cannot guarantee correctness, i.e., absence of failures

Related techniques: code generation, program synthesis (from spec)



Debugging: from Failures to Defects

I Both, testing and verification attempts exhibit new failures

I Debugging is a systematic process that finds and eliminates
the defect that led to an observed failure

I Programs without known failures may still contain defects:
I if they have not been verified
I if they have been verified,

but the failure is not covered by the specification

Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification

Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification

Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification

Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

I ca. 15.000 proof steps

I ca. 200 case distinctions

I Two human interactions, ca. 1 minute computing time

Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large programs

Tools Used
I Automated running of tests: JUnit

I Debugging: Eclipse debugger

Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large programs

Tools Used
I Automated running of tests: JUnit

I Debugging: Eclipse debugger


