
Software Engineering
Testing and Debugging — Debugging

Prof. Dr. Peter Thiemann

Universität Freiburg

22.06.2011

Today’s Topic

— Last Lecture —

4 Bug tracking

4 Program control — Design for Debugging

4 Input simplification

— This Lecture —
I Execution observation

I With logging
I Using debuggers

I Tracking causes and effects

Today’s Topic

— Last Lecture —

4 Bug tracking

4 Program control — Design for Debugging

4 Input simplification

— This Lecture —
I Execution observation

I With logging
I Using debuggers

I Tracking causes and effects

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

Reproduce failure with test input

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

Reduction of failure-inducing problem

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

State known to be healthy

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

State known to be infected

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

State where failure becomes observable

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

I Separate healthy from infected states

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

I Separate healthy from infected states

I Separate relevant from irrelevant states

Central Problem

How can we observe a program run?

Challenges/Obstacles

I Observation of intermediate state not part of functionality

I Observation can change the behavior

I Narrowing down to relevant time/state sections

Central Problem

How can we observe a program run?

Challenges/Obstacles

I Observation of intermediate state not part of functionality

I Observation can change the behavior

I Narrowing down to relevant time/state sections

The Naive Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behavior (timing, . . .)

8 Buffered output lost on crash

8 Source code required, recompilation necessary

The Naive Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behavior (timing, . . .)

8 Buffered output lost on crash

8 Source code required, recompilation necessary

The Naive Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behavior (timing, . . .)

8 Buffered output lost on crash

8 Source code required, recompilation necessary

Logging Frameworks

Example (Logging Framework log4j for Java)

logging.apache.org/log4j/

Main principles of log4j

I Each class can have its own logger object

I Each logger has level:
DEBUG < INFO < WARN < ERROR < FATAL

I Example: log message with myLogger and level INFO:
myLogger.info(Object message);

I Logging is controlled by configuration file:
which logger, level, layout, amount of information, channel,
etc.

I No recompilation necessary for reconfiguration

logging.apache.org/log4j/

log4j Demo

I Start Eclipse under jvm 1.5
I Load Dubbel.java
I Add build path /usr/share/java/ to library

I Show Dubbel.java

I Show DubbelConfigLog.cf

I Run Dubbel.java

I Copy DubbelConfigNoLog.cf to DubbelConfig.cf

I Refresh project, run Dubbel.java

There are also tools for navigating log files

Output can be configured to be mailto:// or database access

log4j Demo

I Start Eclipse under jvm 1.5
I Load Dubbel.java
I Add build path /usr/share/java/ to library

I Show Dubbel.java

I Show DubbelConfigLog.cf

I Run Dubbel.java

I Copy DubbelConfigNoLog.cf to DubbelConfig.cf

I Refresh project, run Dubbel.java

There are also tools for navigating log files

Output can be configured to be mailto:// or database access

Evaluation of Logging Frameworks

4 Output cluttering can be mastered

4 Small performance overhead
I Beware: string operations can be expensive! Protection:

i f (logger.isDebugEnabled ()) { ... log

... };

4 Exceptions are loggable

4 Log complete up to crash

4 Instrumented source code reconfigurable w/o recompilation

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with aspects, but also with Debuggers

What is a Debugger?

Basic Functionality of a Debugger

Execution Control Stop execution on specified conditions:
breakpoints

Interpretation Step-wise execution of code

State Inspection Observe value of variables and stack

State Change Change state of stopped program

Historical term Debugger is misnomer as there are many
debugging tools

I Traditional debuggers (gdb for C) based on command line I/F
I We use the built-in GUI-based debugger of the Eclipse

framework
I Feel free to experiment with other debuggers!

What is a Debugger?

Basic Functionality of a Debugger

Execution Control Stop execution on specified conditions:
breakpoints

Interpretation Step-wise execution of code

State Inspection Observe value of variables and stack

State Change Change state of stopped program

Historical term Debugger is misnomer as there are many
debugging tools

I Traditional debuggers (gdb for C) based on command line I/F
I We use the built-in GUI-based debugger of the Eclipse

framework
I Feel free to experiment with other debuggers!

Running Example

public s ta t i c int search(int [] array ,

int target) {

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

}

Eclipse Debugger

I Open directory BinSearch, create project Search

I Create/show run configuration testBin1

I Run testBin1

I Open Debugging view of project Search

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws
ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws
ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws
ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws
ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws
ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

Halting Program Execution

Breakpoint

A program location that, when it is reached, halts execution

Example (Setting Breakpoint)

In search() at loop, right-click, toggle breakpoint

Some remarks on breakpoints

I Set breakpoint at last statement where state is known to be
healthy

I Formulate healthiness as an explicit hypothesis

I In Eclipse, not all lines can be breakpoints,
because these are actually inserted into bytecode

I Remove breakpoints when no longer needed

Resuming Program Execution

Example (Execution Control Commands)

I Start debugging of run configuration testBin1

I Resume halts when breakpoint is reached in next loop
execution

I Disable breakpoint for this session

I Resume executes now until end

I Remove from debug log (Remove All Terminated)

I Enable breakpoint again in Breakpoints window

I Close debugging perspective

Step-Wise Execution of Programs

Step-Wise Execution Commands

Step Into Execute next statement, then halt

Step Over Consider method call as one statement

Some remarks on step-wise execution

I Usually Java library methods stepped over
I They should not contain defects
I You probably don’t have the source code

I To step over bigger chunks, change breakpoints, then resume

Inspecting the Program State

Inspection of state while program is halted

I Variables window
I Unfold reference types
I Pretty-printed in lower half of window

I Tooltips for variables in focus in editor window

I Recently changed variables are highlighted

Example (Tracking search())

I Start debugging at beginning of loop (testBin2)

I Step through one execution of loop body

I After first execution of loop body low==high==2

I Therefore, mid==2, but array[2] doesn’t exist!

I If target is greater than all array elements, eventually
low==mid==array.length

Inspecting the Program State

Inspection of state while program is halted

I Variables window
I Unfold reference types
I Pretty-printed in lower half of window

I Tooltips for variables in focus in editor window

I Recently changed variables are highlighted

Example (Tracking search())

I Start debugging at beginning of loop (testBin2)

I Step through one execution of loop body

I After first execution of loop body low==high==2

I Therefore, mid==2, but array[2] doesn’t exist!

I If target is greater than all array elements, eventually
low==mid==array.length

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of second round of loop, set high to correct value 1

Resuming execution now yields correct result

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of second round of loop, set high to correct value 1

Resuming execution now yields correct result

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of second round of loop, set high to correct value 1

Resuming execution now yields correct result

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run: argument mid of array is 2 at this point

I Create breakpoint at code position where evaluation takes
place

I Add watch expression mid==2 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==2 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big
enough

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run: argument mid of array is 2 at this point

I Create breakpoint at code position where evaluation takes
place

I Add watch expression mid==2 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==2 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big
enough

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run: argument mid of array is 2 at this point

I Create breakpoint at code position where evaluation takes
place

I Add watch expression mid==2 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==2 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big
enough

Evaluation of Debuggers

4 Code cluttering completely avoided

4 Prudent usage of breakpoints/watches reduces states to be
inspected

4 Full control over all execution aspects

8 Debuggers are interactive tools, re-use difficult

8 Performance can degrade, disable unused watches

8 Inspection of reference types (lists, etc.) is tedious

Important Lessons

I Both, logging and debuggers are necessary and complementary

I Need visualization tools to render complex data structures

I Minimal/small input, localisation of unit is important

Evaluation of Debuggers

4 Code cluttering completely avoided

4 Prudent usage of breakpoints/watches reduces states to be
inspected

4 Full control over all execution aspects

8 Debuggers are interactive tools, re-use difficult

8 Performance can degrade, disable unused watches

8 Inspection of reference types (lists, etc.) is tedious

Important Lessons

I Both, logging and debuggers are necessary and complementary

I Need visualization tools to render complex data structures

I Minimal/small input, localisation of unit is important

Tracking Causes and Effects

Determine defect that is origin of failure

Fundamental problem
Program executes forward, but need to reason backwards from
failure

Example

In search() the failure was caused by wrong value mid,
but the real culprit was high

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another
statement

Control Change the program counter
Determine which statement is executed next

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another
statement

Control Change the program counter
Determine which statement is executed next

Statements with Write Effect (in Java)

I Assignments

I I/O, because it affects buffer content

I new(), because object initialisation writes to fields

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another
statement

Control Change the program counter
Determine which statement is executed next

Statements with Control Effect (in Java)

I Conditionals, switches

I Loops: determine whether their body is executed

I Dynamic method calls: implicit case distinction on
implementations

I Abrupt termination statements: break, return

I Exceptions: potentially at each object or array access!

Statement Dependencies

Definition (Data Dependency)

Statement B is data dependent on statement A iff

1. A writes to a variable v that is read by B and

2. There is at least one execution path between A and B

in which v is not written to

“The outcome of A can directly influence a variable read in B”

Statement Dependencies

Definition (Control Dependency)

Statement B is control dependent on statement A iff

I There is an execution path from A to B such that:
For all statements S 6=A on the path, all execution paths from
S to the method exit pass through B

and

I There is an execution path from A to the method exit that
does not pass through B

“The outcome of A can influence whether B is executed”

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is data-dependent on this statement

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is control-dependent on the while statement

Computing Backward Dependencies

Definition (Backward Dependency)

Statement B is backward dependent on statement A iff

I There is a sequence of statements A = A1, A2, . . . , An = B such
that:

1. for all i , Ai+1 is either control dependent or data dependent on
Ai

2. there is at least one i with Ai+1 being data dependent on Ai

“The outcome of A can influence the program state in B”

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is backward-dependent on data- and control- dependent statements

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is backward-dependent on data- and control- dependent statements

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Backward-dependent statements for first execution of loop body

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Backward-dependent statements for repeated execution of loop body

Systematic Location of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy

Defect

I Separate healthy from infected states

I Separate relevant from irrelevant states

Systematic Location of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy
Defect

I Separate healthy from infected states

I Separate relevant from irrelevant states

Systematic Location of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be healthy
Defect

I Separate healthy from infected states

I Separate relevant from irrelevant states

I Compute backward-dependent statements from infected
locations

Tracking Down Infections

Algorithm for systematic location of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Set L to infected location reported by failure, set I := {L}
2. Compute statements S that potentially contain origin of

defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
let M⊆ {L1, . . . , Ln} be the infected locations

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in
M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on healthy locations, it must be the infection
site!

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is infected, mid==low==high==2

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Look for origins of low and high

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

low was changed in previous loop execution, value low==1 seems healthy

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

high ==2 set at start (if-branch not taken when target not found), infected!

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

high does not depend on any other location—found infection site!

Example

int low = 0;

int high = array.length - 1 ;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Fixed defect

After Fixing the Defect

I Failures that exhibited a defect become new test cases after
the fix

I used for regression testing

I Use existing unit test cases to
I test a suspected method in isolation
I make sure that your bug fix did not introduce new bugs
I exclude wrong hypotheses about the defect

Open Questions

1. How is evaluation of test runs related to specification?
So far: wrote oracle program or evaluated interactively
How to check automatically whether test outcome conforms
to spec?

2. It is tedious to write test cases by hand
Easy to forget cases
Java: aliasing, run-time exceptions

3. When does a program have no more bugs?
How to prove correctness without executing ∞ many paths?

Literature for this Lecture

Essential

Zeller Why Programs Fail: A Guide to Systematic
Debugging, Morgan Kaufmann, 2005
Chapters 7, 8, 9

Recommended

log4j Tutorial logging.apache.org/log4j/1.2/manual.html

logging.apache.org/log4j/1.2/manual.html

	Introduction
	Logging
	Using Debuggers
	Tracking
	Testing and Debugging
	Literature

