Softwaretechnik Model Driven Architecture Introduction

Prof. Dr. Peter Thiemann

Universität Freiburg

20.07.2011

Introduction MDA

Material

► Thomas Stahl, Markus Völter. Model-Driven Software Development. Wiley & Sons. 2006.

- ► Anneke Kleppe, Jos Warmer. MDA Explained: The Model Driven Architecture: Practice and Promise. Pearson. 2003.
- ▶ Stephen J. Mellor, Axel Uhl, Kendall Scott, Dirk Weise. MDA Distilled: Solving the Integration Problem with the Model Driven Architecture. Pearson. 2004.

What is MDA?

- ► MDA = Model Driven Architecture
 - also: MD (Software/Application) Development, Model Based [Development/Management/Programming]
 - Model Driven Engineering, Model Integrated Computing
- Initiative of the OMG (trade mark)
 - ▶ OMG = Object Management Group: CORBA, UML, . . .
 - open consortium of companies (ca. 800 Firmen)
- ► Goal: Improvement of software development process
 - Interoperability
 - Portability
- Approach: Shift development process from code-centric to model-centric
 - ▶ Reuse of models
 - Transformation of models
 - ► Code generation from models

Goals of MDA

Higher Degree of Abstraction

Portability and Reusability

- Development abstracts from target platform
- Technology mapping in reusable transformations
- New technology ⇒ new transformation

Interoperability

- Systems span several platforms
- ▶ Information flow between platforms via *bridges*
- Byproduct of model transformations

Goals of MDA

Models and Model Transformations

Productivity

Every development phase directly contributes to the product, not just the implementation

Documentation and Maintenance

- Changes through changes of the models
- ▶ Models are documentation ⇒ consistency
- Separation of concern
- Better handle on changing technology

Specialization

- Business processes
- ▶ Technologies

The Concept "Model"

(according to Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction

A model need not encompass all features of the original object.

Pragmatism

A model is always goal-oriented.

The Concept "Model"

(according to Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction

A model need not encompass all features of the original object.

Pragmatism

A model is always goal-oriented.

▶ Modeling creates a representation that only encompasses the relevant features for a particular purpose.

Formal Models

Models authored in a formal language

- ► Textual: defined by grammar, BNF, etc
- Grafical: defined by Metamodel
 - Which modeling elements?
 - Which combinations?
 - Which modifications?

Models with a formal semantics

- ► Example: logical formula ⇒ truth value
- ► Example: context-free grammar ⇒ language
- ► Example: program ⇒ programm execution

Why Formal Models?

Model Editor

- manipulation of models
- requires formal definition

Why Formal Models?

Model Editor

- manipulation of models
- requires formal definition

Model Transformation

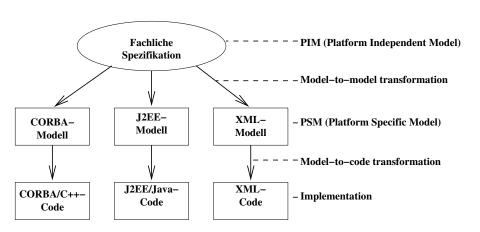
- transforming a model in one or more target models
- requires formal definition / formal semantics

Why Formal Models?

Model Editor

- manipulation of models
- requires formal definition

Model Transformation


- transforming a model in one or more target models
- requires formal definition / formal semantics

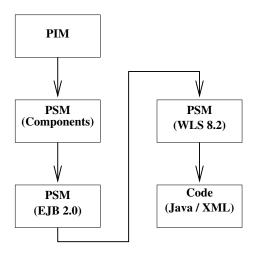
Model Verification

- properties: interface, timing, . . .
- relation between model and original
- requires formal definition and formal semantics

Models in MDA

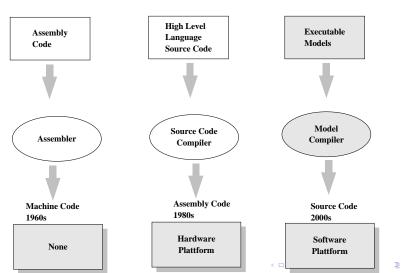
Models in MDA/2

PIM vs PSM


- Relative concepts
- Smooth transition
- ▶ Several levels of model and transformation steps possible
- ► Inverse transformation PSM ⇒ PIM unlikely

Transformation

- ► Code is the ultimate model (PSM)
- Model-to-code is a special case


Models and Transformations

Platform

- API
- Virtual machine
- Provides several services
- Examples
 - ▶ Different processors ⇒ hardware platform
 - ▶ Operating system ⇒ software platform
 - ▶ Java VM \Rightarrow software platform
 - ► EJB ⇒ component platform
 - CORBA, Webservices, . . .
 - Application architecture, DSL (Domain Specific Language)

Examples for Platforms

Transformations

- Mappings between models
- Formal definition required for automatic application
- Standardized transformation language QVT (Queried Views and Transformations) Distilled from 23 very different proposals
- ▶ Tools
 - Transformations based on metamodel
 - Code generator via patterns
 - Proprietary transformation languages (scripting)
- Currently lack of interoperability 4 implementations of parts of the standard

Next Steps

► Metamodeling

