Prof. Dr. Peter Thiemann Manuel Geffken Matthias Keil

Summer Term 2012

Softwaretechnik

http://proglang.informatik.uni-freiburg.de/teaching/swt/2012/

Exercise Sheet 11

Exercise 1: Javascript

Given the following Javascript code snippet:

```
1 s = "some_random_string";
2 s.x = 42;
3 s.x;
```

- 1. Use the JavaScript shell from http://www.squarefree.com/shell/shell.html to execute the above Javascript code. Which results do you get?
- 2. Change the first or second line of the example, such that executing the third line (s.x;) prints 42.
- 3. Explain the behavior you observe. What would you suggest to prevent such mysterious bugs from happening?

Exercise 2: Types for JAUS

Which of the following JAUS expressions are type correct? Give a type derivation for all type correct expressions. Assume that variable x is of type *int* and variable y is of type *boolean*.

- 1. 1 + true
- 2. 23 + (47 11)
- 3. !(!false)
- 4. y + x
- 5. !y

Exercise 3: Evaluation of JAUS

Evaluate the following JAUS expressions as far as possible.

- 1. 23 + (47 11)
- 2. (1+1) + true

Which of the resulting expressions are values?

Exercise 4: Type soundness

Prove the following theorem:

If $\vdash e_0 : t$ then there exists e_n such that $\vdash e_n : t$ and $e_0 \longrightarrow e_1 \longrightarrow \ldots \longrightarrow e_{n-1} \longrightarrow e_n$.

Hint: The following lemma might be helpful. You don't need to prove it. For every expression e_0 , there exists an expression e_n such that $e_0 \longrightarrow e_1 \longrightarrow \ldots \longrightarrow e_{n-1} \longrightarrow e_n$ and no expression e_{n+1} exists with $e_n \longrightarrow e_{n+1}$.