
Softwaretechnik
Lecture 02: Processes

Peter Thiemann

University of Freiburg, Germany

SS 2012

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 1 / 34



Processes

Terms

Software

I organized collections of computer data and instructions
I disembodied information machines (D. Gelernter, Mirror

Worlds)

Program

I solves isolated task
I developed by a single person

SW System

I multiple components
I developed by team

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 2 / 34



Processes

Programming in the Small

I development of a program or a component
I algorithmic aspects (sometimes)
I procedure:

I “stepwise refinement” (N. Wirth),
I “structured programming” (E. Dijkstra)
I “structured control flow”

(if-then-else, for, while, . . . ; no goto)
I procedural decomposition, top-down
I flat monolithic structure

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 3 / 34



Processes

Programming in the Large

I development of a software system:
I long life span
I high probability of changes

(due to aging)

I requirements at first fuzzy
I communication problem user ↔ developer
I understanding the problem

I decomposition in components
(for programming in the small)

I information hiding (D.L. Parnas)
I promising approach:

object-oriented analysis and design

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 4 / 34



Processes

Process Models

I process model: structured network of activities and artifacts

I an activity transforms artifacts

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 5 / 34



Processes

Phases

I Phases provide structure of process model
I Description of a phase

I goals
I activities
I roles
I required/new artifacts
I patterns, guidelines, and conventions

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 6 / 34



Processes

Desiderata for Process Models

I the fewer phases, artifacts, roles, the better

I artifacts should cover standard case

I tool support

I quality assurance for each artifact

I traceability

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 7 / 34



Processes

The Classic: Waterfall Model

Requirements

Design

Specification

Coding

Testing
Integration

Operation
Maintenance

I early error correction is cheaper
(e.g. after analysis phase 100 times
cheaper than after deployment)

I hence, after every phase:
check of previous phases

I potentially return to previous phase

I phases may overlap

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 8 / 34



Processes

Requirements Analysis

tractability

cost analysis

result:
decision on continuation of project

documents: (artifacts)

I requirement specification (Lastenheft)
I cost estimation
I project plan

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 9 / 34



Processes

Definition / Specification

starting point:
vague, incomplete, inconsistent requirements

result:
complete, consistent, unequivocal, accomplishable
requirements

documents:
I system specification (Pflichtenheft)
I product model (e.g. OOA)
I GUI model
I user manual

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 10 / 34



Processes

I only external behavior of system

I analysis of requirements
I results in system specification

I fixes the scope of the product
I serves as basis for contract between customer and contractor
I basis for final acceptance
I contains

I functionality
I user interface
I interfaces to other systems
I performance (response time, space usage)
I required hard and software
I guidelines for documentation
I time scheduling

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 11 / 34



Processes

Design

starting point: system specification / product model

I decomposition in components / subsystems
I fixes external behavior / interfaces of each component

result: software architecture (with specification of components)

Implementation and Testing

I translation of component specification to programming language

I compilation to machine language

I module testing

result: programmed system and testing protocols

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 12 / 34



Processes

Integration, system test, and deployment

I integration:
I stepwise addition of single components
I tested with data fixed in advance

(functional requirements only)

I system test:
I check of entire system (incl. hardware)
I check of non-functional requirements

(performance, GUI)

I deployment:
I transfer of software system in its working environment

result: deployed product, protocol of final acceptance

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 13 / 34



Processes

Maintenance

I bug fixes

I changes due to changes in requirements (incl. extensions)

result: maintained product

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 14 / 34



Processes

Prototyping Model
Lifecycle

require−
prototype

design
ments

build
prototype

test
prototype

document
requirements codedesign test integrate

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 15 / 34



Processes

Prototyping - Overview

Advantages:

I understanding the
requirements for the user
interface

I improves understanding
between developer and client

I early testing of feasibility,
usefulness, performance, etc.

Problems:

I users treat the prototype as
the solution

I prototype is only a partial
specification

I significant user involvement

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 16 / 34



Processes

Phased Models

Evolutionary Development

1. model core requirements

2. design and implement

3. deploy

4. feedback from customer

5. revise/extend requirements

6. revise/extend design

7. revise/extend implementation

8. iterate from 3 until all
requirements met

Incremental Development

1. model all requirements

2. design and implement
only core requirements

3. deploy

4. feedback from customer

5. revise requirements

6. design further requirements

7. implement further requirements

8. iterate from 3 until all
requirements met

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 17 / 34



Processes

Incremental Development

(each iteration adds more functionality)

integratedesign code test O&M

integratedesign code test O&M

integratedesign code test O&M

integratedesign code test O&M

release 4

release 3

release 2

release 1

re
q

u
ir

em
en

ts

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 18 / 34



Processes

Evolutionary Development

(each iteration incorporates new requirements)

integratedesign code test O&Mreqts.

integratedesign code test O&Mreqts.

integratedesign code test O&Mreqts.

lessons learned

lessons learned

version 1

version 2

version 3

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 19 / 34



Processes

Spiral Model (Barry Boehm 1988)

2

1234 1 2 3 4

co
nc

ep
t 

of
 o

pe
ra

tio
n

3

4

4

3

2

2

4

1

3

Plan

Constraints

Develop 
and Test

Determine Goals,
Alternatives,

Evaluate 
Alternatives 

and Risks

al
te

rn
at

iv
es

budget

integration and

test plan

al
te

rn
at

iv
es

budget

constr
aints

constr
aints

constr
aints

al
te

rn
at

iv
es

budget budget
co

nst
r.

alte
rn

ativ
es

requirem
ents,

lifecycle plan
developm

ent plan

analysis

risk

prototype

risk analysis

risk analysis

risk analysis

prototype prototype prototype

d
et

ai
le

d
 d

es
ig

n

co
de

re
q

u
ir

em
en

ts

so
ft

w
ar

e

valid
ated

requirements so
ft

w
ar

e 
d

es
ig

n
valid

ated,

verifie
d desig

n

acceptance test
sy

ste
m

 te
st

unit 
te

st

implementation plan

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 20 / 34



Processes

Comments on Phased Models

I Incremental development

I avoids ’big bang’ implementation
I but assumes all requirements known up-front

I Evolutionary development

I allows for lessons from each version to be incorporated into the next
I but: hard to plan for versions beyond the first;

lessons may be learned too late

I Spiral model

I primarily targeted at very large projects
I iterative model that incorporates prototyping and risk analysis
I but: cannot cope with unforeseen changes

not clear how to analyze risk

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 21 / 34



Processes

Agile Development Techniques
Extreme Programming (XP, Kent Beck 1999)

I frequent releases

I short development cycles

I pair programming

I unit testing w tests developed before the code

I features specified by tests

I implement features when needed

I clear progress marks

I don’t spend much time on design

I stakeholder involvement

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 22 / 34



Processes

Agile Development Techniques
Scrum (Hirotaka Takeuchi and Ikujiro Nonaka 1986)

I Flexible approach to development; incremental process

I Adaptability to changing requirements

Roles Product owner, Scrum master, Team; Stakeholders,
Managers

Sprint 2-4 weeks of intense development; goal: working increment
that implements the sprint backlog; sprint backlog frozen
during a sprint; self organization; burn down chart

Sprint Backlog requirements chosen for a sprint

Product Backlog as yet unimplemented requirements

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 23 / 34



Processes

V-Model “Entwicklungsstandard für Systeme des Bundes”

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 24 / 34



Processes

V-Model

I Builds on waterfall model

I Emphasizes validation connections between late phases and early
phases

I Objectives
I risk minimization
I quality assurance
I cost reduction
I communication between stakeholders

I Current instance: V-Model XT

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 25 / 34



Processes

The Unified Software Process

Use-Case Driven

I Which user-visible processes are implemented by the system?
I Analysis, design, implementation, and testing driven by

use-cases

Architecture centric

I Architecture developed in parallel to use cases (mutual
dependency)

Iterative and Incremental

I eliminate risks first
I checkpoint after each iteration
I on failure of an iteration step, only current extension needs to

be reconsidered
I small steps speed up project
I easy stepwise identification of the requirements

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 26 / 34



Processes

Structure of the Unified Software Process

I sequence of cycles

I after each cycle: product release with code, manuals, UML models,
and test cases

I cycle consists of 4 phases:
Inception, Elaboration, Construction, Transition

I each phase consists of iterations

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 27 / 34



Processes

Cycle

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 28 / 34



Processes

Main-Workflows and Phases

I each phase ends with a mile stone

I each phase processes all workflows (with varying intensity)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 29 / 34



Processes

Inception Phase

I functionality of system from users’ perspective
most important use cases (stakeholder needs)

I preliminary sketch of suitable architecture

I project plan and cost

I identify most important risks (with priorities)

I plan elaboration phase

I GOAL: rough vision of the product

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 30 / 34



Processes

Elaboration Phase

I specify (most) use cases in detail

I design architecture

I implement most important use cases

I result: initial architecture

I plan activities and resources for remaining project

I use cases and architecture stable?

I risk management?

I GOAL: prototype (proof-of-concept for architecture)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 31 / 34



Processes

Construction Phase

I implement system

I high resource needs

I small architectural changes

I GOAL: system ready for customer (small errors acceptable)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 32 / 34



Processes

Transition Phase

I deliver beta-version to customer

I address problems (immediately or in next release)

I train customer

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 33 / 34



Processes

Summary

I Software has unique problems with far-reaching consequences

I Creating software systems requires structured process models

I Classic process phases: waterfall model

I Further process models: prototyping, evolutionary, incremental, spiral,
agile, V-model, unified SW process

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 34 / 34


	Processes

