Softwaretechnik
Lecture 08: Testing and Debugging — Overview

Peter Thiemann

University of Freiburg, Germany

SS 2012

Literature

Essential Reading
» Why Programs Fail: A Guide to Systematic Debugging,
A Zeller
» The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading
» Code Complete, 2nd Edition, S McConnell

Cost of Software Errors

$ 60 billion

yearly cost of software errors for US economy [NIST 2002]

Cost of Software Errors

$ 180 billion

total sales of software in 2000

697,000 software engineers & 585,000 computer programmers

Cost of Software Errors

estimated

0
507%
of each software project spent on testing

(spans from 30% to 80%)

Cost of Software Errors

very rough approximation

money cost of
spent on =~ remaining
testing errors

Cost of Software Errors

very rough approximation

money cost of
spent on + remaining
testing errors

66% of size of software
industry

A Quiz About Testing

A simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

y

Output

Tells whether the triangle is
Scalene: no two sides are equal
Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Task: Create a Set of Test Cases for this Program

Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

A

Why not a valid triangle? (a,b,c) with a > b+ ¢

Define valid triangles: a < b+ c¢

Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)
Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a<b+candb<a+candc<a+b

Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a<b+candb<a+candc<a+b

Solution — 1 Point for each Correct Answer

Q 4: some permutations of previous (2,2,4), (2,4,2)

Solution — 1 Point for each Correct Answer

Q 5: (3,4,5) a valid scalene triangle

Solution — 1 Point for each Correct Answer

Q 6: (3,3,3) an equilateral triangle
3

Solution — 1 Point for each Correct Answer

Q 7: (3,4,3) valid isosceles t.

Solution — 1 Point for each Correct Answer

Q 8: all permutations of valid isosceles triangle:

(3.4,3), (3,3,4), (433)

Solution — 1 Point for each Correct Answer

Q 9: one side with zero value (0,4,3)

Solution — 1 Point for each Correct Answer

Q 10: one side with negative value (-1,4,3)

Solution — 1 Point for each Correct Answer

Q 11: all sides zero (0,0,0)

Solution — 1 Point for each Correct Answer

Q 12: at least one value is non-integer (1,3,2.5)

Solution — 1 Point for each Correct Answer

Q 13: wrong number of arguments (2,4) or (1,2,3,3)

Solution — 1 Point for each Correct Answer

Q 14 (the most important one):

Did you specify the expected output in each case?

About the Quiz

» Q 1-13 correspond to failures that have actually occurred in
implementations of the program

» How many questions did you answer?
<57 5—-778—-107 > 107 All?

» Highly qualified, experienced programmers score 7.8 on
average

First Conclusions

» Finding good and sufficiently many test cases is difficult
» Even a good set of test cases cannot exclude more failures

» A specification is required to identify failures

The discipline of Testing is all about Test Cases

Remark: At Ericsson: 35% of code is test cases!

What is a Bug? Basic Terminology

Yo Photo # NH 96566-KN

e |
g Onckam shaddcl
/000 . 5 = Gaghom
1370, (038 Me -me
63y PRO >
Sk
T ¢z =~ O

v Strtd Gl 55

(NLdty }’\,»l

il OIJH‘:T E\d’lm\ case
[PTIRYPAY § 3,,9....

Harvard University, Ma

Bug-Related Terminology
1. Defect (aka bug, fault) int

First Computer "Bug". 1945

{’-17uo 7032 537 015
/ 9037 §YC 29T covuph

LTS cen) s 7250550

2. 13oyrCyiS
2030670y S
33 {oJ:l WVJ ‘?‘J Jeok”

s

{J(s.“ chect)

@Zl. *70 ?u n ';‘ E

(s t)n relay -

0-{ 541 L”.hﬁ {eun.-L

rk 1l Aiken Relay Calculator

roduced to code by programmer

Failure and Specification

Some failures are obvious
» obviously wrong output/behaviour
» non-termination
» crash

> freeze

... but most are not!

In general, what constitutes a failure, is defined by a specification! J

Correctness is a relative notion
— B. Meyer, 1997J

Every program is correct with respect to SOME specification
— myself, todayJ

Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:

No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:

No, there is at least one
cow in Scotland, which
is brown on one side!!

Specification: Putting it into Practice

Example
A Sorting Program:

1 public static Integer[] sort(Integer[] a) {
}

Testing sort():
» sort({3,2,5}) == {2,3,5} v

> sort({}) == {} v
> sort({17}) == {17} v

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Example Cont'd

Example

1 public static Integer[] sort(Integer[] a) {
}

Specification

Requires: a is a non-null array of integers

Ensures: returns the unchanged reference a containing
a permutation of the old contents of a that is
sorted

sort(null) throws NullPointerException X

The Contract Metaphor

Contract is preferred specification metaphor for procedural and
OO PLs

first propagated by B. Meyer, Computer 25(10)40-51, 1992

Same Principles as Legal Contract between a Client and
Supplier
Supplier aka Implementer, in JAVA, a class or method
Client Mostly a caller object, or human user for main ()

Contract One or more pairs of ensures/requires clauses
defining mutual benefits and obligations of client and
implementer

The Meaning of a Contract

Specification (of method ¢::m())
Requires: Precondition

Ensures: Postcondition

“If a caller of ¢::m() fulfills the required Precondition, then the
class C ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C::m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C::m() is
executed.”

Failure

Definition: failure

A method fails if it is called in a state fulfilling the required
precondition of its contract and does not terminate in a state
fulfilling the postcondition.

Non-termination, abnormal termination considered as failures here J

Notions of Correctness

Definition: partial correctness

A method is partially correct if whenever it is started in a state
fulfilling the required precondition and it terminates, then its final
state fulfills the postcondition.

This amounts to proving Absence of Failures!

Definition: total correctness

A method is totally correct if whenever it is started in a state
fulfilling the required precondition, then it terminates and its final
state fulfills the postcondition.

Total correctness implies termination!

Invariant

Objects with non-trivial state

often maintain a class invariant.

Example: a class for dates

public class Date {
public int day;
public int month;
public int year;

}

Invariant:

1 <= day <= 31 /\ 1 <= month <= 12 /\

(month in {4, 6, 9, 11} => day <= 30) /\

(month == 2 => day <= 29) /\

(month == 2 /\ (year % 4 !'= 0 \/ (year % 100 == 0 /\ year °
=> day <= 28)

Invariant 1l

» All public methods of a class must preserve the class invariant.

» Class invariants can be incorporated into pre- and
postconditions.

Specification (of a method)

Requires: Precondition and Invariant
Ensures: Postcondition and Invariant

Specification (of a constructor)

Requires: Precondition
Ensures: Invariant

Further Elements of a Contract

Type signature (minimal contract)

Exceptions raised

Temporal properties
» the capacity of the table does not change over time

» a set that is only supposed to grow

Testing vs. Verification

TESTING
Goal: find evidence for presence of failures

Testing: execute a program with the intent of detecting failure J

Testing cannot guarantee correctness, i.e., absence of failures J

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures

Verification guarantees correctness J

Related techniques: code generation, program synthesis (from spec)

Debugging: from Failures to Defects

» Both, testing and verification attempts exhibit new failures

» Debugging is a systematic process that finds and eliminates
the defect that led to an observed failure
» Programs without known failures may still contain defects:

» if they have not been verified
» if they have been verified,
but the failure is not covered by the specification

Where Formalization Comes In

Testing is very expensive, even with tool support

30-80% of development time goes into testing

Test cases h Test case generator

1

Code under test Formal specification

£

Code checking success h Test oracle

Formal Verification of Program Correctness

correct

Java Code Formal specification

Program Verification System

Computer support essential for verification of real programs
synchronized java.lang.StringBuffer append(char c)

» ca. 15.000 proof steps

» ca. 200 case distinctions

» Two human interactions, ca. 1 minute computing time

Tool Support is Essential

Some Reasons for Using Tools
» Automate repetitive tasks
» Avoid typos, etc.

» Cope with large programs

Tools Used
» Automated running of tests: JUNIT
» Debugging: ECLIPSE debugger

