
Softwaretechnik
Testing and Debugging — Testing II

Albert-Ludwigs-Universität Freiburg

Matthias Keil
Institute for Computer Science
Faculty of Engineering
University of Freiburg

14. Juni 2012



Introduction
Albert-Ludwigs-Universität Freiburg

Summary

Specifications (motivation, contracts, pre- and
postconditions, what to think about)

Testing (motivation, different kinds of testing, role in
software development, junit)

What’s next?

More examples of test cases, presenting aspects of writing
test cases and features of JUnit

How to write a good test case?

How to construct a good collection of test cases (test suite)?

Matthias Keil Softwaretechnik 14. Juni 2012 2 / 30



Introduction
Albert-Ludwigs-Universität Freiburg

Summary

Specifications (motivation, contracts, pre- and
postconditions, what to think about)

Testing (motivation, different kinds of testing, role in
software development, junit)

What’s next?

More examples of test cases, presenting aspects of writing
test cases and features of JUnit

How to write a good test case?

How to construct a good collection of test cases (test suite)?

Matthias Keil Softwaretechnik 14. Juni 2012 2 / 30



Basic JUnit Usage
Albert-Ludwigs-Universität Freiburg

Let’s review the basic example of using junit.

1 public class Ex1 {

2 public static int find_min(int[] a) {

3 int x, i;

4 x = a[0];

5 for (i = 1; i < a.length;i ++) {

6 if (a[i] < x) x = a[i];

7 }

8 return x;

9 }

10 ...

Matthias Keil Softwaretechnik 14. Juni 2012 3 / 30



Basic JUnit Usage
Albert-Ludwigs-Universität Freiburg

continued from prev page

1 ...

2 public static int[] insert(int[] x, int n)

3 {

4 int[] y = new int[x.length + 1];

5 int i;

6 for (i = 0; i < x.length; i++) {

7 if (n < x[i]) break;

8 y[i] = x[i];

9 }

10 y[i] = n;

11 for (; i < x.length; i++) {

12 y[i+1] = x[i];

13 }

14 return y;

15 }

16 }

Matthias Keil Softwaretechnik 14. Juni 2012 4 / 30



Basic JUnit Usage
Albert-Ludwigs-Universität Freiburg

1 import org.junit .*;

2 import static org.junit.Assert .*;

3 import java.util .*;

4
5 public class Ex1Test {

6 @Test public void test_find_min_1 () {

7 int[] a = {5, 1, 7};

8 int res = Ex1.find_min(a);

9 assertTrue(res == 1);

10 }

11
12 @Test public void test_insert_1 () {

13 int[] x = {2, 7};

14 int n = 6;

15 int[] res = Ex1.insert(x, n);

16 int[] expected = {2, 6, 7};

17 assertTrue(Array.equals(expected , res));

18 }

19 } Matthias Keil Softwaretechnik 14. Juni 2012 5 / 30



Using the IUT to Setup or Check the Test
Albert-Ludwigs-Universität Freiburg

May need to call methods in the class under test
to set up a test case,
to decide the outcome (testing oracle)

How do we know that those methods do what they are
supposed to, so that the method which is actually under test
isn’t incorrectly blamed for a failure?

The “helper” methods of a test should be tested themselves
in other test cases.

There should be some ordering such that at most one new
method is tested for each new test case.

Sometimes there can be circular dependencies which do not
permit this approach.

In that case it is up to the tester to decide in what method
call the cause of the failure lies.

Matthias Keil Softwaretechnik 14. Juni 2012 6 / 30



Using the IUT to Setup or Check the Test
Albert-Ludwigs-Universität Freiburg

May need to call methods in the class under test
to set up a test case,
to decide the outcome (testing oracle)

How do we know that those methods do what they are
supposed to, so that the method which is actually under test
isn’t incorrectly blamed for a failure?

The “helper” methods of a test should be tested themselves
in other test cases.

There should be some ordering such that at most one new
method is tested for each new test case.

Sometimes there can be circular dependencies which do not
permit this approach.

In that case it is up to the tester to decide in what method
call the cause of the failure lies.

Matthias Keil Softwaretechnik 14. Juni 2012 6 / 30



Example
Albert-Ludwigs-Universität Freiburg

Using IUT to setup and decide test case, and use fixture and
common tests.

1 import java.util .*;

2
3 public class Ex2_Set <X> {

4 private ArrayList <X> arr;

5
6 public Ex2_Set () {

7 arr = new ArrayList <X>();

8 }

9
10 public void add(X x) {

11 for (int i = 0; i < arr.size(); i++) {

12 if (x.equals(arr.get(i))) return;

13 }

14 arr.add(x);

15 }

16 ...
Matthias Keil Softwaretechnik 14. Juni 2012 7 / 30



Example contd
Albert-Ludwigs-Universität Freiburg

continued from prev page

1 ...

2 public boolean member(X x) {

3 for (int i = 0; i < arr.size(); i++) {

4 if (x.equals(arr.get(i))) return true;

5 }

6 return false;

7 }

8
9 public int size() {

10 return arr.size();

11 }

12
13 public void union(Ex2_Set <X> s) {

14 for (int i = 0; i < s.arr.size(); i++) {

15 add(s.arr.get(i));

16 }

17 }

18 } Matthias Keil Softwaretechnik 14. Juni 2012 8 / 30



Example contd
Albert-Ludwigs-Universität Freiburg

1 import org.junit .*;

2 import static org.junit.Assert .*;

3 import java.util .*;

4
5 public class Ex2_SetTest {

6
7 private Ex2_Set <String > s, s2;

8
9 @Before public void setup() {

10 s = new Ex2_Set <String >();

11 s.add("one"); s.add("two");

12 s2 = new Ex2_Set <String >();

13 s2.add("two"); s2.add("three");

14 }

15 ...

Matthias Keil Softwaretechnik 14. Juni 2012 9 / 30



Example contd
Albert-Ludwigs-Universität Freiburg

1 ...

2 private void testset(String [] exp , Ex2_Set <

String > s) {

3 assertTrue(s.size() == exp.length);

4 for (int i = 0; i < s.size(); i++) {

5 assertTrue(s.member(exp[i]));

6 }

7 }

8
9 @Test public void test_union_1 () {

10 s.union(s2);

11 String [] exp = {"one", "two", "three"}

12 testset(exp , s);

13 }

14 }

Matthias Keil Softwaretechnik 14. Juni 2012 10 / 30



Performing More Than one Test in the Same Method
Albert-Ludwigs-Universität Freiburg

With JUnit it’s in principle possible to perform more than
one test in a test case method, because failures are reported
as exceptions (which includes line numbers where they
occurred)

We just talked about a situation where this may be
necessary.

But in other situations it may also seem appealing to put
several tests in one methods.

Best practise: keep them apart in individual methods and use
fixtures and such to keep the code compact.

Matthias Keil Softwaretechnik 14. Juni 2012 11 / 30



Performing More Than one Test in the Same Method
Albert-Ludwigs-Universität Freiburg

With JUnit it’s in principle possible to perform more than
one test in a test case method, because failures are reported
as exceptions (which includes line numbers where they
occurred)

We just talked about a situation where this may be
necessary.

But in other situations it may also seem appealing to put
several tests in one methods.

Best practise: keep them apart in individual methods and use
fixtures and such to keep the code compact.

Matthias Keil Softwaretechnik 14. Juni 2012 11 / 30



Performing More Than one Test in the Same Method
Albert-Ludwigs-Universität Freiburg

With JUnit it’s in principle possible to perform more than
one test in a test case method, because failures are reported
as exceptions (which includes line numbers where they
occurred)

We just talked about a situation where this may be
necessary.

But in other situations it may also seem appealing to put
several tests in one methods.

Best practise: keep them apart in individual methods and use
fixtures and such to keep the code compact.

Matthias Keil Softwaretechnik 14. Juni 2012 11 / 30



Performing More Than one Test in the Same Method
Albert-Ludwigs-Universität Freiburg

With JUnit it’s in principle possible to perform more than
one test in a test case method, because failures are reported
as exceptions (which includes line numbers where they
occurred)

We just talked about a situation where this may be
necessary.

But in other situations it may also seem appealing to put
several tests in one methods.

Best practise: keep them apart in individual methods and use
fixtures and such to keep the code compact.

Matthias Keil Softwaretechnik 14. Juni 2012 11 / 30



Preamble – Fixture
Albert-Ludwigs-Universität Freiburg

Often several tests need to set up in the same or a similar
way.

This common setup of a set of tests is called preamble, or
fixture.

Write submethods which perform the common setup, and
which are called from each test case.

A slightly more convenient (but less flexible) way is to use
the JUnit @Before and @After annotations.

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 12 / 30



Preamble – Fixture
Albert-Ludwigs-Universität Freiburg

Often several tests need to set up in the same or a similar
way.

This common setup of a set of tests is called preamble, or
fixture.

Write submethods which perform the common setup, and
which are called from each test case.

A slightly more convenient (but less flexible) way is to use
the JUnit @Before and @After annotations.

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 12 / 30



Preamble – Fixture
Albert-Ludwigs-Universität Freiburg

Often several tests need to set up in the same or a similar
way.

This common setup of a set of tests is called preamble, or
fixture.

Write submethods which perform the common setup, and
which are called from each test case.

A slightly more convenient (but less flexible) way is to use
the JUnit @Before and @After annotations.

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 12 / 30



Preamble – Fixture
Albert-Ludwigs-Universität Freiburg

Often several tests need to set up in the same or a similar
way.

This common setup of a set of tests is called preamble, or
fixture.

Write submethods which perform the common setup, and
which are called from each test case.

A slightly more convenient (but less flexible) way is to use
the JUnit @Before and @After annotations.

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 12 / 30



Preamble – Fixture
Albert-Ludwigs-Universität Freiburg

Often several tests need to set up in the same or a similar
way.

This common setup of a set of tests is called preamble, or
fixture.

Write submethods which perform the common setup, and
which are called from each test case.

A slightly more convenient (but less flexible) way is to use
the JUnit @Before and @After annotations.

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 12 / 30



Testcases are Programs
Albert-Ludwigs-Universität Freiburg

Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

Write methods which are called by many test cases.

As JUnit tests are implemented in Java, all Java features
may be used to make writing test cases more convenient

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 13 / 30



Testcases are Programs
Albert-Ludwigs-Universität Freiburg

Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

Write methods which are called by many test cases.

As JUnit tests are implemented in Java, all Java features
may be used to make writing test cases more convenient

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 13 / 30



Testcases are Programs
Albert-Ludwigs-Universität Freiburg

Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

Write methods which are called by many test cases.

As JUnit tests are implemented in Java, all Java features
may be used to make writing test cases more convenient

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 13 / 30



Testcases are Programs
Albert-Ludwigs-Universität Freiburg

Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

Write methods which are called by many test cases.

As JUnit tests are implemented in Java, all Java features
may be used to make writing test cases more convenient

See previous example

Matthias Keil Softwaretechnik 14. Juni 2012 13 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or
Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or
Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or
Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or
Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or

Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Abnormal Termination
Albert-Ludwigs-Universität Freiburg

JUnit propagates the result of an assertion by throwing an
exception

Default treatment: report failureif the IUT throws an
exception

Most of the time: correct behavior (no unhandled exceptions
in the IUT)

To override this behaviour, there are two options:

Catch and analyse exceptions thrown by IUT in the test case
method, or
Give an expected optional element of the @Test annotation

Matthias Keil Softwaretechnik 14. Juni 2012 14 / 30



Exceptions – Example
Albert-Ludwigs-Universität Freiburg

Exception means failure:

1 @Test public void test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Exception means success:

1 @Test(expected=Exception.class) public void

test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Matthias Keil Softwaretechnik 14. Juni 2012 15 / 30



Exceptions – Example
Albert-Ludwigs-Universität Freiburg

Exception means failure:

1 @Test public void test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Exception means success:

1 @Test(expected=Exception.class) public void

test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Matthias Keil Softwaretechnik 14. Juni 2012 15 / 30



Non-termination
Albert-Ludwigs-Universität Freiburg

Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

Better way: use the timeout option of @Test

If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.

Matthias Keil Softwaretechnik 14. Juni 2012 16 / 30



Non-termination
Albert-Ludwigs-Universität Freiburg

Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

Better way: use the timeout option of @Test

If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.

Matthias Keil Softwaretechnik 14. Juni 2012 16 / 30



Non-termination
Albert-Ludwigs-Universität Freiburg

Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

Better way: use the timeout option of @Test

If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.

Matthias Keil Softwaretechnik 14. Juni 2012 16 / 30



Non-termination
Albert-Ludwigs-Universität Freiburg

Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

Better way: use the timeout option of @Test

If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.

Matthias Keil Softwaretechnik 14. Juni 2012 16 / 30



Non-termination
Albert-Ludwigs-Universität Freiburg

Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

Better way: use the timeout option of @Test

If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.

Matthias Keil Softwaretechnik 14. Juni 2012 16 / 30



What is a Correct Test Case?
Albert-Ludwigs-Universität Freiburg

Correct test case

Obvious: the outcome check at the end of the test should
signal success if the IUT did what it should, and failure if it
didn’t

Easier to forget: the setup before the call and the parameters
sent along should correspond to the intended usage of the
IUT.

In both cases we use the specification

The setup of the test should fulfill the specified precondition
of the tested method,

the outcome check should adhere to the postcondition

Matthias Keil Softwaretechnik 14. Juni 2012 17 / 30



What is a Correct Test Case?
Albert-Ludwigs-Universität Freiburg

Correct test case

Obvious: the outcome check at the end of the test should
signal success if the IUT did what it should, and failure if it
didn’t

Easier to forget: the setup before the call and the parameters
sent along should correspond to the intended usage of the
IUT.

In both cases we use the specification

The setup of the test should fulfill the specified precondition
of the tested method,

the outcome check should adhere to the postcondition

Matthias Keil Softwaretechnik 14. Juni 2012 17 / 30



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

f(2, 5, 6) = . . . valid 4

f(1, 4, 4) = . . . valid 4

f(3, 7, 5) = . . . not valid 8

Matthias Keil Softwaretechnik 14. Juni 2012 18 / 30



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

f(2, 5, 6) = . . . valid 4

f(1, 4, 4) = . . . valid 4

f(3, 7, 5) = . . . not valid 8

Matthias Keil Softwaretechnik 14. Juni 2012 18 / 30



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

f(2, 5, 6) = . . . valid 4

f(1, 4, 4) = . . . valid 4

f(3, 7, 5) = . . . not valid 8

Matthias Keil Softwaretechnik 14. Juni 2012 18 / 30



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

f(2, 5, 6) = . . . valid 4

f(1, 4, 4) = . . . valid 4

f(3, 7, 5) = . . . not valid 8

Matthias Keil Softwaretechnik 14. Juni 2012 18 / 30



How to Write a Good Test Suite?
Albert-Ludwigs-Universität Freiburg

Apart from getting each test case right, we also want the
tests in a test suite to test an IUT in as many different ways
as possible.

Maximize the chance that a bug is found by running the test
suite.

Common approach: find a set of tests which has a good
coverage.

Matthias Keil Softwaretechnik 14. Juni 2012 19 / 30



How to Write a Good Test Suite?
Albert-Ludwigs-Universität Freiburg

Apart from getting each test case right, we also want the
tests in a test suite to test an IUT in as many different ways
as possible.

Maximize the chance that a bug is found by running the test
suite.

Common approach: find a set of tests which has a good
coverage.

Matthias Keil Softwaretechnik 14. Juni 2012 19 / 30



How to Write a Good Test Suite?
Albert-Ludwigs-Universität Freiburg

Apart from getting each test case right, we also want the
tests in a test suite to test an IUT in as many different ways
as possible.

Maximize the chance that a bug is found by running the test
suite.

Common approach: find a set of tests which has a good
coverage.

Matthias Keil Softwaretechnik 14. Juni 2012 19 / 30



Black-box and White-box Testing
Albert-Ludwigs-Universität Freiburg

The activity of deriving test cases can be divided into two
categories wrt what sources of information are used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The
code can be used in addition to the specification to derive test
cases.

Matthias Keil Softwaretechnik 14. Juni 2012 20 / 30



Black-box and White-box Testing
Albert-Ludwigs-Universität Freiburg

The activity of deriving test cases can be divided into two
categories wrt what sources of information are used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The
code can be used in addition to the specification to derive test
cases.

Matthias Keil Softwaretechnik 14. Juni 2012 20 / 30



Black-box and White-box Testing
Albert-Ludwigs-Universität Freiburg

The activity of deriving test cases can be divided into two
categories wrt what sources of information are used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The
code can be used in addition to the specification to derive test
cases.

Matthias Keil Softwaretechnik 14. Juni 2012 20 / 30



Black-box Testing
Albert-Ludwigs-Universität Freiburg

The basic idea is to analyse the specification and try to
cover all cases that it discriminates.

In addition, the tests should include cornes cases of the
involved types.

Matthias Keil Softwaretechnik 14. Juni 2012 21 / 30



Either . . . Or
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

f(null) = . . .

f({x, y}) = . . .

Matthias Keil Softwaretechnik 14. Juni 2012 22 / 30



Either . . . Or
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

f(null) = . . .

f({x, y}) = . . .

Matthias Keil Softwaretechnik 14. Juni 2012 22 / 30



Either . . . Or
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

f(null) = . . .

f({x, y}) = . . .

Matthias Keil Softwaretechnik 14. Juni 2012 22 / 30



If . . . Then . . . Otherwise
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2∗m,
otherwise n = 2 ∗ m + 1

Testing half():

half(4) = 2

half(7) = 3

Matthias Keil Softwaretechnik 14. Juni 2012 23 / 30



If . . . Then . . . Otherwise
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2∗m,
otherwise n = 2 ∗ m + 1

Testing half():

half(4) = 2

half(7) = 3

Matthias Keil Softwaretechnik 14. Juni 2012 23 / 30



If . . . Then . . . Otherwise
Albert-Ludwigs-Universität Freiburg

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2∗m,
otherwise n = 2 ∗ m + 1

Testing half():

half(4) = 2

half(7) = 3

Matthias Keil Softwaretechnik 14. Juni 2012 23 / 30



Inequalities
Albert-Ludwigs-Universität Freiburg

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

min(2, 5) = 2

min(3, 3) = 3

min(7, 1) = 1

Matthias Keil Softwaretechnik 14. Juni 2012 24 / 30



Inequalities
Albert-Ludwigs-Universität Freiburg

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

min(2, 5) = 2

min(3, 3) = 3

min(7, 1) = 1

Matthias Keil Softwaretechnik 14. Juni 2012 24 / 30



Inequalities
Albert-Ludwigs-Universität Freiburg

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

min(2, 5) = 2

min(3, 3) = 3

min(7, 1) = 1

Matthias Keil Softwaretechnik 14. Juni 2012 24 / 30



Inequalities
Albert-Ludwigs-Universität Freiburg

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

min(2, 5) = 2

min(3, 3) = 3

min(7, 1) = 1

Matthias Keil Softwaretechnik 14. Juni 2012 24 / 30



Other sources of distinctions

Objects – non-null or null

Arrays – empty or non-empty

Integers – zero, positive or negative

Booleans – true or false

Matthias Keil Softwaretechnik 14. Juni 2012 25 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



White-box Testing
Albert-Ludwigs-Universität Freiburg

A white-box tester has more information at hand and may
write a better test suite.

Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

The specification is still needed to check if each individual
test case is correct. (Correct use of IUT and test oracle)

The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible –
code coverage

The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

However, there are no field studies that support it. . .

Matthias Keil Softwaretechnik 14. Juni 2012 26 / 30



Code Coverage
Albert-Ludwigs-Universität Freiburg

Code coverage can be defined in several ways. The most
frequently seen types of code coverage are

Statement (or line) coverage: Every statement in the code
should be executed at least once by the test suite.

Branch coverage: Every branching point in the program
should be executed, and for each of them all alternatives
should be executed.

Path coverage: All possible execution paths should be
represented among the test cases. (Full path coverage is not
possible in general.)

Matthias Keil Softwaretechnik 14. Juni 2012 27 / 30



1 public static int[] merge(int[] x, int[] y)

2 {

3 int[] z = new int[x.length + y.length ];

4 int i, j;

5 for (i = 0, j = 0; i < x.length && j < y.

length ;) {

6 if (x[i] < y[j]) {

7 z[i + j] = x[i]; i++;

8 } else {

9 z[i + j] = y[j]; j++;

10 }

11 }

12 for (; i < x.length; i++) {

13 z[i + j] = x[i];

14 }

15 for (; j < x.length; j++) {

16 z[i + j] = y[j];

17 }

18 return z;

19 }

Matthias Keil Softwaretechnik 14. Juni 2012 28 / 30



Path Coverage
Albert-Ludwigs-Universität Freiburg

Not possible to test all paths

Infinitely many in general – instead of all, test up to a given
maximum number of iterations of loops

Not all paths are possible

Due to the logical relationship between branching points not all
paths may be possible – keep in mind when deriving test cases

Matthias Keil Softwaretechnik 14. Juni 2012 29 / 30



Path Coverage
Albert-Ludwigs-Universität Freiburg

Not possible to test all paths

Infinitely many in general – instead of all, test up to a given
maximum number of iterations of loops

Not all paths are possible

Due to the logical relationship between branching points not all
paths may be possible – keep in mind when deriving test cases

Matthias Keil Softwaretechnik 14. Juni 2012 29 / 30



Summary (Testing)
Albert-Ludwigs-Universität Freiburg

Informal software specifications

Introduction to software testing (motivation, terminology)

Writing test cases, in general and using JUnit

Deriving test cases

Black-box testing

White-box testing and Code coverage

Matthias Keil Softwaretechnik 14. Juni 2012 30 / 30


	Overview
	Aspects of Test Cases
	What is a Correct Test Case?
	How to Write a Good Test Suite?
	Summary

