Softwaretechnik

Lecture 12: Testing and Debugging — Debugging

Peter Thiemann

University of Freiburg, Germany

21.06.2012

Today's Topic

- Last Lecture —
- ✓ Bug tracking
- ✓ Program control Design for Debugging
- Input simplification
- This Lecture
 - Execution observation
 - ▶ With logging
 - Using debuggers
 - ► Tracking causes and effects

The Main Steps in Systematic Debugging

- ► Separate healthy from infected states
- Separate relevant from irrelevant states

Central Problem

How can we observe a program run?

Challenges/Obstacles

- Observation of intermediate state not part of functionality
- Observation can change the behavior
- Narrowing down to relevant time/state sections

The Naive Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed System.out.println("size" + size);

- Simple and easy
- ✓ Can use any output channel
- ✓ No tools or infrastructure needed, works on any platform
- Code cluttering
- ✗ Output cluttering (at least need to use debug channel)
- ✗ Performance penalty, possibly changed behavior (timing, . . .)
- Buffered output lost on crash
- ✗ Source code required, recompilation necessary

Logging Frameworks

Example (Logging Framework for JAVA) java.util.logging

Main principles of Java logging

- ► Each class can have its own Logger object
- ► Each logger is associated with a level and a handler
- ► Levels: FINEST < FINER < FINE < CONFIG < INFO < WARNING < SEVERE
- ► Handlers: j.u.l.ConsoleHandler, j.u.l.FileHandler
- Example: log message with myLogger and level INFO: myLogger.info(Object message);
- ► Logging can be controlled by program or properties file: which logger, level, filter, formatting, handler, etc.
- No recompilation necessary for reconfiguration

Logging Demo

Evaluation of Logging Frameworks

- ✓ Output cluttering can be mastered
- ✓ Small performance overhead
- Exceptions are loggable
- ✓ Log complete up to crash
- ✓ Instrumented source code reconfigurable w/o recompilation
- ✗ Code cluttering don't try to log everything!

Code cluttering avoidable with aspects, but also with Debuggers

What is a Debugger?

Basic Functionality of a Debugger

Execution Control Stop execution on specified conditions: breakpoints

Interpretation Step-wise execution of code

State Inspection Observe value of variables and stack

State Change Change state of stopped program

Historical term Debugger is misnomer as there are many debugging tools

- ► Traditional debuggers (gdb for C) based on command line I/F
- ► We use the built-in GUI-based debugger of the ECLIPSE framework
 - ▶ Feel free to experiment with other debuggers!

Running Example

```
public static int search( int[] array,
2
                               int target ) {
3
4
     int low = 0;
5
     int high = array.length;
6
     int mid:
7
8
     while ( low <= high ) {
       mid = (low + high)/2;
9
       if ( target < array[ mid ] ) {</pre>
10
           high = mid - 1;
11
       } else if ( target > array[ mid ] ) {
12
         low = mid + 1;
    } else {
13
14
           return mid;
15
16
17
     return -1;
18 }
```

Eclipse Debugger

- Open directory BinSearch, create project Search
- Create/show run configuration testBin1
- Run testBin1
- Open Debugging view of project Search

Testing

```
Running a few test cases ...

search( {1,2}, 1 ) == 0  

search( {1,2}, 2 ) == 1  

search( {1,2}, 4 ) throws

ArrayIndexOutOfBoundsException: 3
```

Example taken from a published JAVA text book :-(

Halting Program Execution

Breakpoint

A program location that, when it is reached, halts execution

Example (Setting Breakpoint)

In search() at loop, right-click, toggle breakpoint

Some remarks on breakpoints

- Set breakpoint at last statement where state is known to be healthy
- ► Formulate healthiness as an explicit hypothesis
- In ECLIPSE, not all lines can be breakpoints, because these are actually inserted into bytecode
- Remove breakpoints when no longer needed

Resuming Program Execution

Example (Execution Control Commands)

- Start debugging of run configuration testBin1
- Resume halts when breakpoint is reached in next loop execution
- Disable breakpoint for this session
- Resume executes now until end
- Remove from debug log (Remove All Terminated)
- ► Enable breakpoint again in Breakpoints window
- Close debugging perspective

Step-Wise Execution of Programs

Step-Wise Execution Commands

Step Into Execute next statement, then halt

Step Over Consider method call as one statement

Some remarks on step-wise execution

- Usually JAVA library methods stepped over
 - ► They should not contain defects
 - You probably don't have the source code
- ▶ To step over bigger chunks, change breakpoints, then resume

Inspecting the Program State

Inspection of state while program is halted

- Variables window
 - Unfold reference types
 - Pretty-printed in lower half of window
- ▶ Tooltips for variables in focus in editor window
- Recently changed variables are highlighted

Example (Tracking search())

- Start debugging at beginning of loop (testBin2)
- ▶ Step through one execution of loop body
- ► After first execution of loop body low==high==2
- ► Therefore, mid==2, but array[2] doesn't exist!
- ► If target is greater than all array elements, eventually low==mid==array.length

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

▶ Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of second round of loop, set high to correct value 1

Resuming execution now yields correct result

Watching States with **Debuggers**

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

- ▶ From test run: argument mid of array is 2 at this point
- Create breakpoint at code position where evaluation takes place
- ► Add watch expression mid==2 to breakpoint properties
- ► Disable breakpoint at start of loop
- Execution halts exactly when mid==2 becomes true

Hints on watch expressions

► Make sure scope of variables in watch expressions is big enough

Evaluation of Debuggers

- ✓ Code cluttering completely avoided
- Prudent usage of breakpoints/watches reduces states to be inspected
- ✓ Full control over all execution aspects
- ➤ Debuggers are interactive tools, re-use difficult
- Performance can degrade, disable unused watches
- Inspection of reference types (lists, etc.) is tedious

Important Lessons

- ▶ Both, logging and debuggers are necessary and complementary
- ▶ Need visualization tools to render complex data structures
- Minimal/small input, localisation of unit is important

Tracking Causes and Effects

Determine defect that is origin of failure

Fundamental problem

Program executes forward, but need to reason backwards from failure

Example

In search() the failure was caused by wrong value mid, but the real culprit was high

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state

Assign a new value to a variable read by another statement

Control Change the program counter

Determine which statement is executed next

Statements with Control Effect (in JAVA)

- ► Conditionals, switches
- ▶ Loops: determine whether their body is executed
- Dynamic method calls: implicit case distinction on implementations
- ► Abrupt termination statements: break, return
- Exceptions: potentially at each object or array access!

Statement Dependencies

Definition (Data Dependency)

Statement B is data dependent on statement A iff

- 1. A writes to a variable v that is read by B and
- 2. There is at least one execution path between A and B in which v is not written to

"The outcome of A can directly influence a variable read in B"

Statement Dependencies

Definition (Control Dependency)

Statement B is control dependent on statement A iff

- ► There is an execution path from A to B such that: For all statements S ≠A on the path, all execution paths from S to the method exit pass through B and
- ► There is an execution path from A to the method exit that does **not** pass through B

"The outcome of A can influence whether B is executed"

Example

```
1 int low = 0;
   int high = array.length;
3
   int mid;
   while ( low <= high ) {</pre>
5
     mid = (low + high)/2;
6
     if ( target < array[ mid ] ) {</pre>
7
8
9
         high = mid - 1;
     } else if ( target > array[ mid ] ) {
         low = mid + 1;
10 } else {
11
       return mid;
12
13 }
14
   return -1;
```

mid is control-dependent on the while statement

Computing Backward Dependencies

Definition (Backward Dependency)

Statement B is backward dependent on statement A iff

There is a sequence of statements $A = A_1, A_2, \dots, A_n = B$ such that:

- 1. for all i, A_{i+1} is either control dependent or data dependent on A_i
- 2. there is at least one i with A_{i+1} being data dependent on A_i

"The outcome of A can influence the program state in B"

Example

```
1 int low = 0;
   int high = array.length;
3
   int mid;
4
   while ( low <= high ) {</pre>
5
     mid = (low + high)/2;
6
     if ( target < array[ mid ] ) {</pre>
          high = mid - 1;
8  } else if ( target > array[ mid ] ) {
          low = mid + 1;
10 } else {
11
         return mid;
12
13 }
14
   return -1;
```

Backward-dependent statements for repeated execution of loop body

Systematic Location of Defects

- Separate healthy from infected states
- Separate relevant from irrelevant states
- Compute backward-dependent statements from infected locations

Tracking Down Infections

Algorithm for systematic location of defects

Let \mathcal{I} be a set of infected locations (variable+program counter)

- 1. Initialize $\mathcal{I} := \{ \text{infected location reported by failure} \}$
- 2. Choose a current, infected location $L \in \mathcal{I}$
- 3. Compute statements S that may contain origin of defect: one level of backward dependency from L in execution path
- 4. Inspect variables v_1, \ldots, v_n written to in S: let $\mathcal{M} \subseteq \{v_1, \ldots, v_n\}$ be the infected variables
- 5. If $\mathcal{M} \neq \emptyset$ (there is an infected variable):

 - 5.2 Goto 2.
- 6. *L* depends only on healthy locations, it must be the infection site!

Example

```
1 int low = 0;
   int high = array.length - 1;
3
   int mid;
   while ( low <= high ) {
5
     mid = (low + high)/2;
6
     if ( target < array[ mid ] ) {</pre>
         high = mid - 1;
8
     } else if ( target > array[ mid ] ) {
9
         low = mid + 1;
10 } else {
11
        return mid;
12
13 }
14 return -1;
   Fixed defect
```

After Fixing the Defect

- Failures that exhibited a defect become new test cases after the fix
 - used for regression testing
- ▶ Use existing unit test cases to
 - test a suspected method in isolation
 - make sure that your bug fix did not introduce new bugs
 - exclude wrong hypotheses about the defect

Open Questions

- How is evaluation of test runs related to specification?
 So far: wrote oracle program or evaluated interactively
 How to check automatically whether test outcome conforms to spec?
- It is tedious to write test cases by hand Easy to forget cases
 JAVA: aliasing, run-time exceptions
- 3. When does a program have no more bugs? How to prove correctness without executing ∞ many paths?

Literature for this Lecture

Essential

Zeller Why Programs Fail: A Guide to Systematic Debugging, Morgan Kaufmann, 2005 Chapters 7, 8, 9