Table of Contents

Design by Contract

Contracts for Procedural Programs
Contracts for Object-Oriented Programs
Contract Monitoring
Verification of Contracts
Contracts for Procedural Programs
Reminder: Underlying Idea

Transfer the notion of contract between business partners to software engineering

What is a contract?
A binding agreement that explicitly states the obligations and the benefits of each partner
Example: Contract between Builder and Landowner

<table>
<thead>
<tr>
<th></th>
<th>Obligations</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landowner</td>
<td>Provide 5 acres of land; pay for building if completed in time</td>
<td>Get building in less than six months</td>
</tr>
<tr>
<td>Builder</td>
<td>Build house on provided land in less than six month</td>
<td>No need to do anything if provided land is smaller than 5 acres; Receive payment if house finished in time</td>
</tr>
</tbody>
</table>
Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods, components/operations, ... In terms of software architecture, the partners are the components and each connector may carry a contract.
Contracts for Procedural Programs

- Goal: Specification of imperative procedures
- Approach: give **assertions** about the procedure
 - **Precondition**
 - must be true on entry
 - ensured by caller of procedure
 - **Postcondition**
 - must be true on exit
 - ensured by procedure *if it terminates*

\[\text{Precondition}(\text{State}) \Rightarrow \text{Postcondition}(\text{procedure}(\text{State})) \]

- Notation: \{\text{Precondition}\} procedure \{\text{Postcondition}\}
- Assertions stated in first-order predicate logic
Example

Consider the following procedure:

```c
/**
 * @param a an integer
 * @returns integer square root of a
 */
int root (int a) {
    int i = 0;
    int k = 1;
    int sum = 1;
    while (sum <= a) {
        k = k+2;
        i = i+1;
        sum = sum+k;
    }
    return i;
}
```
Specification of root

- types guaranteed by compiler: \(a \in \text{integer}\) and \(\text{root} \in \text{integer}\) (the result)

1. root as a partial function

 Precondition: \(a \geq 0\)

 Postcondition: \(\text{root} \times \text{root} \leq a < (\text{root} + 1) \times (\text{root} + 1)\)

2. root as a total function

 Precondition: \(\text{true}\)

 Postcondition:

 \[
 (a \geq 0 \Rightarrow \text{root} \times \text{root} \leq a < (\text{root} + 1) \times (\text{root} + 1))
 \]

 \[
 \wedge
 \]

 \[
 (a < 0 \Rightarrow \text{root} = 0)
 \]
Weakness and Strength

Goal:

- find weakest precondition
 a precondition that is implied by all other preconditions
 highest demand on procedure
 largest domain of procedure
 \(Q: \text{what if precondition} = \text{false}?\)

- find strongest postcondition
 a postcondition that implies all other postconditions
 smallest range of procedure
 \(Q: \text{what if postcondition} = \text{true}?\)

Met by “root as a total function”:

- \textbf{true} is weakest possible precondition
- “defensive programming”
Example (Weakness and Strength)

Consider \(\text{root} \) as a function over integers

Precondition: \(\text{true} \)

Postcondition:

\[
\begin{align*}
(a \geq 0 & \Rightarrow \text{root} \times \text{root} \leq a < (\text{root} + 1) \times (\text{root} + 1)) \\
\wedge \\
(a < 0 & \Rightarrow \text{root} = 0)
\end{align*}
\]

- \(\text{true} \) is the weakest precondition
- The postcondition can be strengthened to

\[
\begin{align*}
(\text{root} \geq 0) & \wedge \\
(a \geq 0 & \Rightarrow \text{root} \times \text{root} \leq a < (\text{root} + 1) \times (\text{root} + 1)) \\
\wedge \\
(a < 0 & \Rightarrow \text{root} = 0)
\end{align*}
\]
An Example

Insert an element in a table of fixed size

```java
class TABLE<T> {
    int capacity; // size of table
    int count; // number of elements in table
    T get (String key) {...}
    void put (T element, String key);
}
```

Precondition: table is not full

\[\text{count} < \text{capacity} \]

Postcondition: new element in table, count updated

\[\text{count} \leq \text{capacity} \]
\[\land \text{get(key)} = \text{element} \]
\[\land \text{count} = \text{old count} + 1 \]
<table>
<thead>
<tr>
<th></th>
<th>Obligations</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller</td>
<td>Call put only on non-full table</td>
<td>Get modified table in which element is associated with key</td>
</tr>
<tr>
<td>Procedure</td>
<td>Insert element in table so that it may be retrieved through key</td>
<td>No need to deal with the case where table is full before insertion</td>
</tr>
</tbody>
</table>
Contracts for Object-Oriented Programs
Contracts for methods have additional complications

- local state
 receiving object’s state must be specified
- inheritance and dynamic method dispatch
 receiving object’s type may be different than statically expected;
 method may be overridden
Local State ⇒ Class Invariant

- class invariant INV is predicate that holds for all objects of the class
 - must be established by all constructors
 - must be maintained by all visible methods
Pre- and Postconditions for Methods

- constructor methods c

$$\{\text{Pre}_c\} \quad c \quad \{\text{INV}\}$$

- visible methods m

$$\{\text{Pre}_m \land \text{INV}\} \quad m \quad \{\text{Post}_m \land \text{INV}\}$$
Table example revisited

- count and capacity are instance variables of class TABLE
- $\text{INV}_{\text{TABLE}}$ is $\text{count} \leq \text{capacity}$
- specification of void put (T element, String key)

 Precondition:

 \[
 \text{count} < \text{capacity}
 \]

 Postcondition:

 \[
 \text{get(key)} = \text{element} \land \text{count} = \text{old count} + 1
 \]
Inheritance and Dynamic Binding

- Subclass may override a method definition
- Effect on specification:
 - Subclass may have different invariant
 - Redefined methods may
 - have different pre- and postconditions
 - raise different exceptions
 ⇒ method specialization
- Relation to invariant and pre-, postconditions in base class?
- Guideline: No surprises requirement (Wing, FMOODS 1997)
 Properties that users rely on to hold of an object of type \(T \) should hold even if the object is actually a member of a subtype \(S \) of \(T \).
Invariant of a Subclass

Suppose

class MYTABLE extends TABLE ...

- each property expected of a TABLE object should also be granted by a MYTABLE object
- if o has type MYTABLE then INV_{TABLE} must hold for o

$\Rightarrow INV_{MYTABLE} \Rightarrow INV_{TABLE}$

- Example: MYTABLE might be a hash table with invariant

\[INV_{MYTABLE} \equiv count \leq capacity/3 \]
Method Specialization

If MYTABLE redefines put then . . .

► the new \textit{precondition must be weaker} and
► the new \textit{postcondition must be stronger}

because in

\begin{verbatim}
TABLE cast = new MYTABLE (150);
...

cast.put (new Terminator (3), "Arnie");
\end{verbatim}

the caller

► only guaranties $\mathbf{Pre}_{\text{put,Table}}$
► and expects $\mathbf{Post}_{\text{put,Table}}$
Requirements for Method Specialization

Suppose class T defines method m with assertions $\text{Pre}_{T,m}$ and $\text{Post}_{T,m}$ throwing exceptions $\text{Exc}_{T,m}$. If class S extends class T and redefines m then the redefinition is a sound method specialization if

1. $\text{Pre}_{T,m} \Rightarrow \text{Pre}_{S,m}$ and
2. $\text{Post}_{S,m} \Rightarrow \text{Post}_{T,m}$ and
3. $\text{Exc}_{S,m} \subseteq \text{Exc}_{T,m}$

each exception thrown by $S.m$ may also be thrown by $T.m$
Example: MYTABLE.put

- $\text{Pre}_{\text{MYTABLE,put}} \equiv \text{count} < \text{capacity}/3$

 not a sound method specialization because it is not implied by $\text{count} < \text{capacity}$.

- MYTABLE may automatically resize the table, so that $\text{Pre}_{\text{MYTABLE,put}} \equiv \text{true}$

 a sound method specialization because $\text{count} < \text{capacity} \Rightarrow \text{true}$!

- Suppose MYTABLE adds a new instance variable T lastInserted that holds the last value inserted into the table.

 $\text{Post}_{\text{MYTABLE,put}} \equiv \text{item(key)} = \text{element}$

 $\land \text{count} = \text{old count} + 1$

 $\land \text{lastInserted} = \text{element}$

 is sound method specialization because

 $\text{Post}_{\text{MYTABLE,put}} \Rightarrow \text{Post}_{\text{TABLE,insert}}$
Interlude: Method Specialization in Java 5

- Overriding methods in Java 5 only allows specialization of the result type. (It can be replaced by a subtype).
- The parameter types must stay unchanged (why?)

Example: Assume A extends B

```java
class C {
    A m () {
        return new A();
    }
}
class D extends C {
    B m () { // overrides method C.m()
        return new B();
    }
}
```
Contract Monitoring
Contract Monitoring

- What happens if a system’s execution violates an assertion at run time?
- A violating execution runs outside the system’s specification.
- The system’s reaction may be arbitrary
 - crash
 - continue

Contract Monitoring

- evaluates assertions at run time
- raises an exception indicating any violation
- assign blame for the violation

Why monitor?

- Debugging (with different levels of monitoring)
- Software fault tolerance (e.g., α and β releases)
What can go wrong

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization
need to check (for all superclasses T of S)

$\triangleright \text{Pre}_{T,m} \Rightarrow \text{Pre}_{S,m}$ on entry and
$\triangleright \text{Post}_{S,m} \Rightarrow \text{Post}_{T,m}$ on exit

how?
Hierarchy Checking

Suppose class S extends T and overrides a method m. Let $T \ x = \text{new } S()$ and consider $x.m()$

- on entry
 - if $\text{Pre}_{T,m}$ holds, then $\text{Pre}_{S,m}$ must hold, too
 - $\text{Pre}_{S,m}$ must hold

- on exit
 - $\text{Post}_{S,m}$ must hold
 - if $\text{Post}_{S,m}$ holds, then $\text{Post}_{T,m}$ must hold, too

- in general: cascade of implications between S and T
- pre- and postcondition only checked for S!
- If the precondition of S is not fulfilled, but the one of T is, then this is a wrong method specialization.
Examples

```java
interface IConsole {
    int getMaxSize();
    @post { getMaxSize > 0 }
    void display (String s);
    @pre { s.length () < this.getMaxSize() }
}

class Console implements IConsole {
    int getMaxSize () { ... }
    @post { getMaxSize > 0 }
    void display (String s) { ... }
    @pre { s.length () < this.getMaxSize() }
}
```
A Good Extension

class RunningConsole extends Console {
 void display (String s) {
 ...
 super.display(String. substring (s, ..., ... + getMaxSize()))
 ...
 }
 @pre { true }
}
A Bad Extension

class PrefixedConsole extends Console {
 String getPrefix() {
 return ">> " ;
 }
 void display (String s) {
 super.display (this.getPrefix() + s);
 }
 @pre { s.length() < this.getMaxSize() − this.getPrefix().length() }
}

- caller may only guarantee IConsole’s precondition
- Console.display can be called with to long argument
- blame the programmer of PrefixedConsole!
Properties of Monitoring

- Assertions can be arbitrary side effect-free boolean expressions
- Instrumentation for monitoring can be generated from the assertions
- Monitoring can only prove the presence of violations, not their absence
- Absence of violations can only be guaranteed by formal verification
Verification of Contracts
Verification of Contracts

- Given: Specification of imperative **procedure** by **Precondition** and **Postcondition**
- Goal: Formal proof for
 \[\text{Precondition}(\text{State}) \Rightarrow \text{Postcondition}(\text{procedure}(\text{State})) \]
- Method: **Hoare Logic**, *i.e.*, a proof system for **Hoare triples** of the form
 \[\{\text{Precondition}\} \text{ procedure } \{\text{Postcondition}\} \]
- named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many other
- here: method bodies, no recursion, no pointers (extensions exist)
Syntax

\[E ::= c | x | E + E | \ldots \] \hspace{1cm} \text{expressions} \\
\[B, P, Q ::= \neg B | P \land Q | P \lor Q \] \hspace{1cm} \text{boolean expressions} \\
\hspace{1cm} | \hspace{1cm} E = E | E \leq E | \ldots \\
\[C, D ::= x=E \] \hspace{1cm} \text{assignment} \\
\hspace{1cm} | \hspace{1cm} C;D \] \hspace{1cm} \text{sequence} \\
\hspace{1cm} | \hspace{1cm} \text{if } B \text{ then } C \text{ else } D \] \hspace{1cm} \text{conditional} \\
\hspace{1cm} | \hspace{1cm} \text{while } B \text{ do } C \] \hspace{1cm} \text{iteration} \\
\[\mathcal{H} ::= \{P\}C\{Q\} \] \hspace{1cm} \text{Hoare triples} \\

\hspace{1cm} \triangleright \text{(boolean) expressions are free of side effects}
Semantics — Domains and Types

\[BValue = \text{true} | \text{false} \]
\[IValue = 0 | 1 | \ldots \]
\[\sigma \in State = \text{Variable} \rightarrow \text{Value} \]

\[E[] : Expression \times State \rightarrow IValue \]
\[B[] : BoolExpression \times State \rightarrow BValue \]
\[S[] : State_\bot \rightarrow State_\bot \]

- \(State_\bot := State \cup \{\bot\} \)
- result \(\bot \) indicates non-termination
Semantics — Expressions

\[
E[c] \sigma = c \\
E[x] \sigma = \sigma(x) \\
E[E + F] \sigma = E[E] \sigma + E[F] \sigma \\
\ldots \\
B[E = F] \sigma = E[E] \sigma = E[F] \sigma \\
B[\neg B] \sigma = \neg B[B] \sigma \\
\ldots
\]
Semantics — Statements

\[
\begin{align*}
S[C] &\perp = \perp \\
S[\text{skip}] &\sigma = \sigma \\
S[x=E] &\sigma = \sigma[x \mapsto E]\sigma \\
S[C;D] &\sigma = S[D](S[C]\sigma) \\
S[\text{if } B \text{ then } C \text{ else } D] &\sigma = B[B]\sigma = \text{true} \rightarrow S[C]\sigma, S[D]\sigma \\
S[\text{while } B \text{ do } C] &\sigma = F(\sigma) \\
\text{where } F(\sigma) & = B[B]\sigma = \text{true} \rightarrow F(S[C]\sigma), \sigma
\end{align*}
\]

- McCarthy conditional: \(b \rightarrow e_1, e_2 \)
Proving a Hoare triple

\{P\} \ C \ \{Q\}

- holds if \((\forall \sigma \in \text{State}) \ P(\sigma) \Rightarrow (Q(S[\cdot]C) \sigma) \lor S[\cdot]C) \sigma = \bot\) (partial correctness)
- alternative reading/notation: \(P, Q \subseteq \text{State}\)
 \{P\} \ C \ \{Q\} \equiv S[\cdot]C)P \subseteq Q \cup \bot
- reading predicates as boolean expressions
 \(B[P] \sigma = \text{true} \Rightarrow (B[Q](S[\cdot]C) \sigma) = \text{true} \lor S[\cdot]C) \sigma = \bot\)
Proof Rules for Hoare Triples

- Proving that $\{P\} \ C \ {Q}$ holds directly from the definition is tedious
- Instead: define axioms and inferences rules
- Construct a derivation to prove the triple
- Choice of axioms and rules guided by structure of C
Skip Axiom

\{P\} \text{skip} \{P\}

Correctness

- \(S[\text{skip}]\sigma = \sigma \)
- \(S[\text{skip}]P = P \)
Assignment Axiom

\[\{ P[x \mapsto E] \} \ x = E \ \{ P \} \]

Examples:

- \(\{ 1 == 1 \} \ x = 1 \ \{ x == 1 \} \)
- \(\{ odd(1) \} \ x = 1 \ \{ odd(x) \} \)
- \(\{ x == 2 * y + 1 \} \ y = 2 * y \ \{ x == y + 1 \} \)
Assignment Axiom — Correctness

\{P[x \mapsto E]\} \ x = E \ \{P\}

- Semantics $S[x=E] \sigma = \sigma[x \mapsto E][E] \sigma$
- Have to show
 $B[P[x \mapsto E]] \sigma = \text{true} \Rightarrow$
 $(B[P](S[x = E] \sigma) = \text{true} \lor S[x = E] \sigma = \bot)$
- By induction on P; result of $B[E' \rho E''] \sigma$ must remain the same; result of $E'[E'] \sigma$ must remain the same
- Sufficient to show $E'[x \mapsto E] \sigma = E'[E'] \sigma[x \mapsto E][E] \sigma$
- Holds because $E[x[x \mapsto E]] \sigma = E[E] \sigma = E[x] \sigma[x \mapsto E][E] \sigma$
Sequence Rule

\[
\begin{array}{c}
\{ P \} \quad C \quad \{ R \} \quad \{ R \} \quad D \quad \{ Q \} \\
\hline
\{ P \} \quad C ; D \quad \{ Q \}
\end{array}
\]

Example:

\[
\begin{align*}
\{ x = 2 \ast y + 1 \} & \quad y = 2 \ast y \quad \{ x = y + 1 \} \\
\{ x = y + 1 \} & \quad y = y + 1 \quad \{ x = y \}
\end{align*}
\]

\[
\begin{align*}
\{ x = 2 \ast y + 1 \} & \quad y = 2 \ast y ; y = y + 1 \quad \{ x = y \}
\end{align*}
\]

Correctness

- If \(\sigma \in P \) then \(\sigma' = S[C] \sigma \in R \cup \{ \bot \} \)
- If \(\sigma' = \bot \) then \(S[D] \bot = \bot \)
- If \(\sigma' \in R \) then \(S[D] \sigma' \in Q \cup \{ \bot \} \)
- Hence: \(\sigma \in P \Rightarrow S[C ; D] \sigma \in Q \cup \{ \bot \} \)
Conditional Rule

\[
\begin{align*}
\{P \land B\} & \quad C \quad \{Q\} & \quad \{P \land \neg B\} & \quad D \quad \{Q\} \\
\{P\} & \quad \text{if } B \text{ then } C \text{ else } D \quad \{Q\}
\end{align*}
\]

Correctness

- Show: \(\sigma \in P \) implies \(S[\text{if } B \text{ then } C \text{ else } D] \in Q \cup \{\bot\} \)

- Exercize
Conditional Rule — Issues

Examples:

\[
\begin{align*}
\{ P \land x < 0 \} & \quad z = -x \quad \{ z = |x| \} & \quad \{ P \land x \geq 0 \} & \quad z = x \quad \{ z = |x| \} \\
\{ P \} & \quad \text{if } x < 0 \text{ then } z = -x \text{ else } z = x \quad \{ z = |x| \}
\end{align*}
\]

- incomplete!
- precondition for \(z = -x \) should be \((z = |x|)[z \mapsto -x] \equiv -x = |x|\)
- need logical rules
Logical Rules

- weaken precondition

\[
P' \Rightarrow P \quad \{P\} \ C \ \{Q\}
\]

\[
\{P'\} \ C \ \{Q\}
\]

- strengthen postcondition

\[
\{P\} \ C \ \{Q\} \quad Q \Rightarrow Q'
\]

\[
\{P\} \ C \ \{Q'\}
\]

- Example needs strengthening: \(P \land x < 0 \Rightarrow -x == |x| \)

- holds if \(P \equiv \text{true}! \)

- similarly: \(P \land x \geq 0 \Rightarrow x == |x| \)

Correctness

\(P' \Rightarrow P \iff P' \subseteq P \) (as set of states)
Completed example:

\[
D_1 = \frac{x < 0 \Rightarrow -x = |x| \quad \{-x = |x|\} \quad z = -x \quad \{z = |x|\}}{\{x < 0\} \quad z = -x \quad \{z = |x|\}}
\]

\[
D_2 = \frac{x \geq 0 \Rightarrow x = |x| \quad \{x = |x|\} \quad z = x \quad \{z = |x|\}}{\{x \geq 0\} \quad z = x \quad \{z = |x|\}}
\]

\[
\{\text{true}\} \quad \text{if } x < 0 \text{ then } z = -x \quad \text{else } z = x \quad \{z = |x|\}
\]
While Rule

\[
\begin{align*}
\{P \land B\} & \quad C \quad \{P\} \\
\{P\} \quad \text{while} \quad B \quad \text{do} \quad C \quad \{P \land \neg B\}
\end{align*}
\]

- \(P\) is loop invariant

Example: try to prove

\[
\{ a \geq 0 \land i = 0 \land k = 1 \land \text{sum} = 1 \}
\]

while \(\text{sum} \leq a\) do

\[
\begin{align*}
& k = k + 2; \\
& i = i + 1; \\
& \text{sum} = \text{sum} + k
\end{align*}
\]

\[
\{ i \cdot i \leq a \land a < (i+1) \cdot (i+1) \}
\]

⇒ while rule not directly applicable …
While Rule

Step 1: Find the loop invariant

\[a \geq 0 \land i = 0 \land k = 1 \land \text{sum} = 1 \]

\[\Rightarrow \]

\[i \cdot i \leq a \land i \geq 0 \land k = 2 \cdot i + 1 \land \text{sum} = (i+1) \cdot (i+1) \]

- \(P \equiv i \cdot i \leq a \land i \geq 0 \land k = 2 \cdot i + 1 \land \text{sum} = (i+1) \cdot (i+1) \)
 holds on entry to the loop

- To prove that \(P \) is an invariant, requires to prove that
 \[\{ P \land \text{sum} \leq a \} \quad k = k + 2; \quad i = i + 1; \quad \text{sum} = \text{sum} + k \{ P \} \]

- It follows by the sequence rule and weakening:
Proof of loop invariance

\begin{align*}
\{ i \cdot i \leq a \land i \geq 0 \land k = 2 \cdot i + 1 \land sum = (i+1) \cdot (i+1) \land sum \leq a \} \\
\{} \\
\}
\end{align*}

\begin{align*}
k = k + 2 \\
\{ i \geq 0 \land k = 2 + 2 \cdot i + 1 \land sum = (i+1) \cdot (i+1) \land sum \leq a \} \\
\{ i + 1 \geq 1 \land k = 2 \cdot (i+1) + 1 \land sum = (i+1) \cdot (i+1) \land sum \leq a \} \\
i = i + 1 \\
\{ i \geq 1 \land k = 2 \cdot i + 1 \land sum = i \cdot i \land sum \leq a \} \\
\{ i \cdot i \leq a \land i \geq 1 \land k = 2 \cdot i + 1 \land sum + k = i \cdot i + k \land sum + k \leq a + k \} \\
sum = sum + k \\
\{ i \cdot i \leq a \land i \geq 1 \land k = 2 \cdot i + 1 \land sum = i \cdot i + k \land sum \leq a + k \} \\
\{ i \cdot i \leq a \land i \geq 1 \land k = 2 \cdot i + 1 \land sum = i \cdot i + 2 \cdot i + 1 \land sum \leq a + k \} \\
\{ i \cdot i \leq a \land i \geq 1 \land k = 2 \cdot i + 1 \land sum = (i+1) \cdot (i+1) \land sum \leq a + k \} \\
\{ i \cdot i \leq a \land i \geq 0 \land k = 2 \cdot i + 1 \land sum = (i+1) \cdot (i+1) \} \\
\end{align*}
Step 2: Apply the while rule

\[
\begin{align*}
\{ P \land \text{sum} \leq a \} & \quad k = k + 2; \ i = i + 1; \ \text{sum} = \text{sum} + k \ \{ P \} \\
\{ P \} & \quad \text{while} \ \text{sum} \leq a \ \text{do} \ k = k + 2; \ i = i + 1; \ \text{sum} = \text{sum} + k \ \{ P \land \text{sum} > a \}
\end{align*}
\]

Now, \(P \land \text{sum} > a \) is

\[
\{ i \cdot i \leq a \land i \geq 0 \land k = 2 \cdot i + 1 \land \text{sum} = (i+1) \cdot (i+1) \land \text{sum} > a \}
\]

implies

\[
\{ i \cdot i \leq a \land a < (i+1) \cdot (i+1) \}
\]
Correctness of While-Rule

\[
\{P \land B\} \ C \ \{P\}
\]
\[
\{P\} \ while \ B \ do \ C \ \{P \land \neg B\}
\]

- Consider \(S[\text{while } B \ do \ C] \sigma = F(\sigma) \)
 where \(F(\sigma) = B[B] \sigma = \text{true} \rightarrow F(S[C] \sigma), \sigma \)

- Case \(\forall n \in \mathbb{N}, B[B](S[C](n) \sigma) = \text{true} \): set \(F(\sigma) = \bot \).

- Case \(\exists n \in \mathbb{N}, B[B](S[C](n) \sigma) = \text{false} \): let \(n_0 \) be minimal

- Let \(\sigma \in P = (P \land B) \uplus (P \land \neg B) \)

- Case \(n_0 = 0 \): \(\sigma \in P \land \neg B \), then \(F(\sigma) = \sigma \in P \land \neg B \). OK.

- Case \(n_0 > 0 \): \(\sigma \in P \land B \), then \(\sigma' = S[C] \sigma \in P \cup \{\bot\} \) by assumption.
 By induction, \(F(\sigma') = S[C](n_0-1) \sigma' \in P \land \neg B \cup \{\bot\} \)
Properties of Formal Verification

- requires more restrictions on assertions (e.g., use a certain logic) than monitoring
- full compliance of code with specification can be guaranteed
- scalability is a challenging research topic:
 - full automatization
 - manageable for small/medium examples
 - large examples require manual interaction
 - real programs use arrays and dynamic datastructures (pointers, objects)