Softwaretechnik

Lecture 13: Design by Contract

Peter Thiemann

University of Freiburg, Germany

25.06.2012

Table of Contents

Design by Contract

Contracts for Procedural Programs Contracts for Object-Oriented Programs Contract Monitoring Verification of Contracts

Contracts for Procedural Programs

Reminder: Underlying Idea

Transfer the notion of contract between business partners to software engineering

What is a contract?

A binding agreement that explicitly states the obligations and the benefits of each partner

Example: Contract between Builder and Landowner

	Obligations	Benefits
Landowner	Provide 5 acres of	Get building in less
	land; pay for building	than six months
	if completed in time	
Builder	Build house on pro-	No need to do any-
	vided land in less than	thing if provided land
	six month	is smaller than 5 acres;
		Receive payment if
		house finished in time

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods, components/operations, ... In terms of software architecture, the partners are the components and each connector may carry a contract.

Contracts for Procedural Programs

- ► Goal: Specification of imperative procedures
- Approach: give assertions about the procedure
 - Precondition
 - must be true on entry
 - ensured by caller of procedure
 - Postcondition
 - must be true on exit
 - ensured by procedure if it terminates
- ▶ Precondition(State) ⇒ Postcondition(procedure(State))
- Notation: {Precondition} procedure {Postcondition}
- Assertions stated in first-order predicate logic

Example

Consider the following procedure:

```
/**
 * Oparam a an integer
 * Oreturns integer square root of a
int root (int a) {
  int i = 0:
  int k = 1;
  int sum = 1:
  while (sum \leq a) {
    k = k+2:
    i = i+1:
    sum = sum + k;
  return i;
```

- ▶ types guaranteed by compiler: a ∈ integer and root ∈ integer (the result)
- 1. root as a partial function

Precondition: $a \ge 0$

Postcondition: $root * root \le a < (root + 1) * (root + 1)$

2. root as a total function

Precondition: true

Postcondition:

$$(a \ge 0 \Rightarrow root * root \le a < (root + 1) * (root + 1)$$

 \land
 $(a < 0 \Rightarrow root = 0)$

Weakness and Strength

Goal:

- find weakest precondition a precondition that is implied by all other preconditions highest demand on procedure largest domain of procedure (Q: what if precondition = false?)
- find strongest postcondition a postcondition that implies all other postconditions smallest range of procedure (Q: what if postcondition = true?)

Met by "root as a total function":

- **true** is weakest possible precondition
- "defensive programming"

Example (Weakness and Strength)

Consider root as a function over integers

Precondition: true

Postcondition:

$$egin{array}{lll} (\mathtt{a} \geq \mathtt{0} & \Rightarrow & \mathtt{root} * \mathtt{root} \leq \mathtt{a} < (\mathtt{root} + \mathtt{1}) * (\mathtt{root} + \mathtt{1})) \\ \land & \\ (\mathtt{a} < \mathtt{0} & \Rightarrow & \mathtt{root} = \mathtt{0}) \end{array}$$

- **true** is the weakest precondition
- ▶ The postcondition can be strengthened to

$$\begin{array}{lll} \mbox{(root} \geq 0) & \wedge \\ \mbox{(a} \geq 0 & \Rightarrow & \mbox{root} * \mbox{root} \leq a < \mbox{(root} + 1) * \mbox{(root} + 1)) & \wedge \\ \mbox{(a} < 0 & \Rightarrow & \mbox{root} = 0) \end{array}$$

An Example

Insert an element in a table of fixed size

```
class TABLE<T> {
  int capacity; // size of table
  int count; // number of elements in table
  T get (String key) {...}
  void put (T element, String key);
```

Precondition: table is not full

count < capacity

Postcondition: new element in table, count updated

```
count \leq capacity
\land get(key) = element
\land count = old count + 1
```

	Obligations	Benefits
Caller	Call put only on	Get modified table
	non-full table	in which element
		is associated with
		key
Procedure	Insert element in	No need to deal
	table so that it	with the case
	may be retrieved	where table is full
	through key	before insertion

Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Contracts for methods have additional complications

- local state receiving object's state must be specified
- inheritance and dynamic method dispatch receiving object's type may be different than statically expected; method may be overridden

Local State \Rightarrow Class Invariant

- class invariant INV is predicate that holds for all objects of the class
- must be established by all constructors
- ⇒ must be maintained by all visible methods

Pre- and Postconditions for Methods

constructor methods c

$$\{\operatorname{Pre}_c\}\ c\ \{\mathit{INV}\}$$

visible methods m

$$\{\operatorname{\mathsf{Pre}}_m \wedge \mathit{INV}\}\ m\ \{\operatorname{\mathsf{Post}}_m \wedge \mathit{INV}\}$$

Table example revisited

- count and capacity are instance variables of class TABLE
- ► INV_{TABLE} is count ≤ capacity
- specification of void put (T element, String key)

Precondition:

Postcondition:

$$\mathtt{get}(\mathtt{key}) = \mathtt{element} \land \mathtt{count} = \mathbf{old} \ \mathtt{count} + 1$$

Inheritance and Dynamic Binding

- Subclass may override a method definition
- Effect on specification:
 - Subclass may have different invariant
 - Redefined methods may
 - have different pre- and postconditions
 - raise different exceptions
 - ⇒ method specialization
- ▶ Relation to invariant and pre-, postconditions in base class?
- ▶ Guideline: *No surprises requirement* (Wing, FMOODS 1997)
 Properties that users rely on to hold of an object of type *T* should hold even if the object is actually a member of a subtype *S* of *T*.

Invariant of a Subclass

Suppose

class MYTABLE extends TABLE ...

- each property expected of a TABLE object should also be granted by a MYTABLE object
- ▶ if o has type MYTABLE then INV_{TABLE} must hold for o
- $\Rightarrow INV_{\text{MYTABLE}} \Rightarrow INV_{\text{TABLE}}$
 - ► Example: MYTABLE might be a hash table with invariant

$$INV_{\texttt{MYTABLE}} \equiv \texttt{count} \leq \texttt{capacity}/3$$

Method Specialization

If MYTABLE redefines put then ...

- ▶ the new precondition must be weaker and
- the new postcondition must be stronger

because in

```
TABLE cast = new MYTABLE (150);
cast.put (new Terminator (3), "Arnie");
```

the caller

- ▶ only guaranties **Pre**_{put,Table}
- ▶ and expects Post_{put,Table}

Requirements for Method Specialization

Suppose class T defines method m with assertions $Pre_{T,m}$ and $Post_{T,m}$ throwing exceptions $\mathbf{Exc}_{T,m}$. If class S extends class T and redefines m then the redefinition is a sound method specialization if

- $ightharpoonup \mathbf{Pre}_{T,m} \Rightarrow \mathbf{Pre}_{S,m}$ and
- $ightharpoonup Post_{T,m} \Rightarrow Post_{T,m}$ and
- ightharpoonup \subseteq $\operatorname{Exc}_{T,m}$ each exception thrown by S.m may also be thrown by T.m

- ▶ Pre_{MYTABLE.put} ≡ count < capacity/3</p> not a sound method specialization because it is not implied by count < capacity.
- ▶ MYTABLE may automatically resize the table, so that **Pre**_{MYTABLE put} ≡ **true** a sound method specialization because count < capacity \Rightarrow **true**!
- Suppose MYTABLE adds a new instance variable T lastInserted that holds the last value inserted into the table.

$$\begin{array}{ll} \textbf{Post}_{\texttt{MYTABLE}, \texttt{put}} \equiv & \texttt{item(key)} = \texttt{element} \\ & \land & \texttt{count} = \textbf{old} \ \texttt{count} + 1 \\ & \land & \texttt{lastInserted} = \texttt{element} \end{array}$$

is sound method specialization because

 $\mathsf{Post}_{\mathtt{MYTABLE},\mathtt{put}} \Rightarrow \mathsf{Post}_{\mathtt{TABLE},\mathtt{insert}}$

Interlude: Method Specialization in Java 5

- Overriding methods in Java 5 only allows specialization of the result type. (It can be replaced by a subtype).
- ► The parameter types muss stay unchanged (why?)

Example: Assume A extends B

```
class C {
  A m () {
    return new A();
class D extends C {
  B m () { // overrides method C.m()
    return new B();
```

Contract Monitoring

Contract Monitoring

- ▶ What happens if a system's execution violates an assertion at run time?
- ▶ A violating execution runs outside the system's specification.
- ► The system's reaction may be arbitrary
 - crash
 - continue

Contract Monitoring

- evaluates assertions at run time
- raises an exception indicating any violation
- assign blame for the violation

Why monitor?

- Debugging (with different levels of monitoring)
- ▶ Software fault tolerance (e.g., α and β releases)

What can go wrong

precondition: evaluate assertion on entry identifies problem in the caller

postcondition: evaluate assertion on exit identifies problem in the callee

invariant: evaluate assertion on entry and exit

problem in the callee's class

hierarchy: unsound method specialization need to check (for all superclasses T of S)

▶ $\mathbf{Pre}_{T,m} \Rightarrow \mathbf{Pre}_{S,m}$ on entry and

▶ $Post_{S,m} \Rightarrow Post_{T,m}$ on exit

how?

Hierarchy Checking

Suppose class S extends T and overrides a method m. Let $T \times = \text{new } S()$ and consider $\times m()$

- on entry
 - if $Pre_{T,m}$ holds, then $Pre_{S,m}$ must hold, too
 - Pres m must hold
- on exit
 - Post_{S,m} must hold
 - ▶ if **Post**_{S,m} holds, then **Post**_{T,m} must hold, too
- ▶ in general: cascade of implications between S and T
- pre- and postcondition only checked for S!
- \triangleright If the precondition of S is not fulfilled, but the one of T is, then this is a wrong method specialization.

Examples

```
interface IConsole {
  int getMaxSize();
    @post { getMaxSize > 0 }
  void display (String s);
    @pre { s.length () < this.getMaxSize() }</pre>
class Console implements IConsole {
  int getMaxSize () { ... }
    @post { getMaxSize > 0 }
  void display (String s) { ... }
    @pre { s.length () < this.getMaxSize() }</pre>
```

A Good Extension

```
class RunningConsole extends Console {
  void display (String s) {
    ...
    super.display(String. substring (s, ..., ... + getMaxSize()))
    ...
  }
  @pre { true }
}
```

A Bad Extension

```
class PrefixedConsole extends Console {
  String getPrefix() {
    return ">> ";
 void display (String s) {
    super.display (this.getPrefix() + s);
    Opre \{ s.length() < this.getMaxSize() - this.getPrefix().length() \}
```

- caller may only guarantee IConsole's precondition
- Console.display can be called with to long argument
- blame the programmer of PrefixedConsole!

Properties of Monitoring

- Assertions can be arbitrary side effect-free boolean expressions
- Instrumentation for monitoring can be generated from the assertions
- ▶ Monitoring can only prove the presence of violations, not their absence
- ▶ Absence of violations can only be guaranteed by formal verification

Verification of Contracts

Verification of Contracts

- Given: Specification of imperative procedure by Precondition and Postcondition
- ▶ Goal: Formal proof for Precondition(State) ⇒ Postcondition(procedure(State))
- ▶ Method: Hoare Logic, i.e., a proof system for Hoare triples of the form

```
{Precondition} procedure {Postcondition}
```

- ▶ named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many other
- ▶ here: method bodies, no recursion, no pointers (extensions exist)

Syntax

$$E \qquad ::= c \mid x \mid E + E \mid \dots \qquad \text{expressions}$$

$$B, P, Q \qquad ::= \neg B \mid P \land Q \mid P \lor Q \qquad \text{boolean expressions}$$

$$\mid E = E \mid E \le E \mid \dots$$

$$C, D \qquad ::= x = E \qquad \text{assignment}$$

$$\mid C; D \qquad \text{sequence}$$

$$\mid \text{if } B \text{ then } C \text{ else } D \text{ conditional}$$

$$\mid \text{while } B \text{ do } C \qquad \text{iteration}$$

$$\mathcal{H} \qquad ::= \{P\}C\{Q\} \qquad \text{Hoare triples}$$

(boolean) expressions are free of side effects

Semantics — Domains and Types

```
BValue = true | false
IValue = 0 | 1 | \dots
\sigma \in State = Variable \rightarrow Value
```

 \mathcal{E} : $Expression \times State \rightarrow IValue$

 $\mathcal{B}[\![]\!]$: $BoolExpression \times State \rightarrow BValue$

 $\mathcal{S} \llbracket
rbracket$: $State_{\perp} \rightarrow State_{\perp}$

- $ightharpoonup State_{\perp} := State \cup \{\bot\}$
- result | indicates non-termination

Semantics — Expressions

$$\begin{array}{lll} \mathcal{E}[\![\![\sigma]\!]\!]\sigma & = & c \\ \mathcal{E}[\![\![x]\!]\!]\sigma & = & \sigma(x) \\ \mathcal{E}[\![\![\![E]\!]\!]+\mathcal{E}[\![\![F]\!]\!]\sigma & = & \mathcal{E}[\![\![E]\!]\!]\sigma + \mathcal{E}[\![\![F]\!]\!]\sigma \\ \dots & & \\ \mathcal{B}[\![\![\![E]\!]\!]\!]\sigma & = & \mathcal{E}[\![\![E]\!]\!]\sigma = \mathcal{E}[\![\![F]\!]\!]\sigma \\ \mathcal{B}[\![\![\![\![]\!]\!]\!]\sigma & = & \neg \mathcal{B}[\![\![\![\![\![}\!]\!]\!]\!]\sigma \\ \dots & & \\ \end{array}$$

Semantics — Statements

```
S[C]
\mathcal{S}[\![\mathtt{skip}]\!]\sigma
                                                               = \sigma[x \mapsto \mathcal{E}[E]\sigma]
S[x=E]\sigma
S[C;D]\sigma
                                                               = \mathcal{S} \llbracket D \rrbracket (\mathcal{S} \llbracket C \rrbracket \sigma)
\mathcal{S}[\![ \text{if } B \text{ then } C \text{ else } D]\!] \sigma \ = \ \mathcal{B}[\![ B]\!] \sigma = \text{true} 	o \mathcal{S}[\![ C]\!] \sigma \ , \ \mathcal{S}[\![ D]\!] \sigma
S[while B do C]\sigma = F(\sigma)
                              where F(\sigma) = \mathcal{B}[\![B]\!]\sigma = \text{true} \to F(\mathcal{S}[\![C]\!]\sigma), \sigma
```

▶ McCarthy conditional: $b \rightarrow e_1, e_2$

Proving a Hoare triple

$$\{P\} \ C \ \{Q\}$$

- ▶ holds if $(\forall \sigma \in State) \ P(\sigma) \Rightarrow (Q(S[C]\sigma) \lor S[C]\sigma = \bot)$ (partial correctness)
- ▶ alternative reading/notation: $P, Q \subseteq State$ $\{P\} \ C \ \{Q\} \equiv S \llbracket C \rrbracket P \subseteq Q \cup \bot$
- reading predicates as boolean expressions

$$\mathcal{B}[\![P]\!]\sigma = \mathtt{true} \Rightarrow (\mathcal{B}[\![Q]\!](\mathcal{S}[\![C]\!]\sigma) = \mathtt{true} \vee \mathcal{S}[\![C]\!]\sigma = \bot)$$

Proof Rules for Hoare Triples

- ightharpoonup Proving that $\{P\}$ C $\{Q\}$ holds directly from the definition is tedious
- ▶ Instead: define axioms and inferences rules
- ► Construct a derivation to prove the triple
- ▶ Choice of axioms and rules guided by structure of C

Skip Axiom

$$\{P\} \ \mathtt{skip} \ \{P\}$$

Correctness

- $S[skip]\sigma = \sigma$
- $ightharpoonup \mathcal{S}[\![\mathtt{skip}]\!]P = P$

Assignment Axiom

$$\{P[x \mapsto E]\} \ x = E \ \{P\}$$

Examples:

- \blacktriangleright {1 == 1} x = 1 {x == 1}
- $ightharpoonup \{odd(1)\}\ x = 1 \{odd(x)\}\$

Assignment Axiom — Correctness

$$\{P[x \mapsto E]\} \ x = E \ \{P\}$$

- ▶ Semantics $S[x=E]\sigma = \sigma[x \mapsto \mathcal{E}[E]\sigma]$
- ▶ Have to show $\mathcal{B}[\![P[x \mapsto E]\!]]\sigma = \mathtt{true} \Rightarrow \\ (\mathcal{B}[\![P]\!](\mathcal{S}[\![x = E]\!]]\sigma) = \mathtt{true} \lor \mathcal{S}[\![x = E]\!]]\sigma = \bot)$
- ▶ By induction on P; result of $\mathcal{B}\llbracket E'\rho E'' \rrbracket \sigma$ must remain the same; result of $\mathcal{E}\llbracket E' \rrbracket \sigma$ must remain the same
- ▶ Sufficient to show $\mathcal{E}\llbracket E'[x \mapsto E] \rrbracket \sigma = \mathcal{E}\llbracket E' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma]$
- ▶ Holds because $\mathcal{E}[\![x[x\mapsto E]]\!]\sigma = \mathcal{E}[\![E]\!]\sigma = \mathcal{E}[\![x]\!]\sigma[x\mapsto \mathcal{E}[\![E]\!]\sigma]$

Sequence Rule

$$\frac{\{P\}\ C\ \{R\}\ \ \{R\}\ D\ \{Q\}}{\{P\}\ C;D\ \{Q\}}$$

Example:

Correctness

- ▶ If $\sigma \in P$ then $\sigma' = S[C]\sigma \in R \cup \{\bot\}$
- ▶ If $\sigma' = \bot$ then $S[D] \bot = \bot$
- ▶ If $\sigma' \in R$ then $S[D]\sigma' \in Q \cup \{\bot\}$
- ▶ Hence: $\sigma \in P \Rightarrow S[C; D]\sigma \in Q \cup \{\bot\}$

Conditional Rule

$$\frac{\{P \land B\} \ C \ \{Q\} \qquad \{P \land \neg B\} \ D \ \{Q\}}{\{P\} \ \text{if} \ B \ \text{then} \ C \ \text{else} \ D \ \{Q\}}$$

Correctness

- ▶ Show: $\sigma \in P$ implies $S[If B \text{ then } C \text{ else } D] \in Q \cup \{\bot\}$
- Exercize

Conditional Rule — Issues

Examples:

- ▶ incomplete!
- ▶ precondition for z = -x should be $(z == |x|)[z \mapsto -x] \equiv -x == |x|$
- ⇒ need logical rules

Logical Rules

weaken precondition

$$\frac{P' \Rightarrow P \qquad \{P\} \ C \ \{Q\}}{\{P'\} \ C \ \{Q\}}$$

strengthen postcondition

$$\frac{\{P\}\ C\ \{Q\}\qquad Q\Rightarrow Q'}{\{P\}\ C\ \{Q'\}}$$

- **Example needs strengthening:** $P \land x < 0 \Rightarrow -x == |x|$
- \triangleright holds if $P \equiv true!$
- ightharpoonup similarly: $P \land x > 0 \Rightarrow x == |x|$

Correctness

 $P' \Rightarrow P \text{ iff } P' \subseteq P \text{ (as set of states)}$

$$\mathcal{D}_{1} = \frac{x < 0 \Rightarrow -x == |x|}{\{x < 0\}} \frac{\{-x == |x|\}}{z = -x} \frac{\{z == |x|\}}{\{x < 0\}}$$

$$\mathcal{D}_{2} = \frac{x \ge 0 \Rightarrow x == |x|}{\{x \ge 0\}} \frac{\{x == |x|\}}{z = x} \frac{\{z == |x|\}}{\{x \ge 0\}}$$

$$\frac{\mathcal{D}_{1}}{\{x < 0\}} \frac{\mathcal{D}_{2}}{z = x} \frac{\mathcal{D}_{2}}{\{x \ge 0\}} \frac{\mathcal{D}_{2}}{\{x \ge 0\}}$$

$$\frac{\{x < 0\}}{\{z = -x\}} \frac{\mathcal{D}_{2}}{\{z == |x|\}}$$

$$\frac{\{x < 0\}}{\{z = -x\}} \frac{\{z == |x|\}}{\{z == |x|\}}$$

While Rule

$$\frac{\{P \land B\} \ C \ \{P\}}{\{P\} \text{ while } B \text{ do } C \ \{P \land \neg B\}}$$

▶ P is loop invariant

Example: try to prove

```
\{ a \ge 0 / i = 0 / k = 1 / sum = 1 \}
while sum <= a do
  k = k+2:
  i = i+1:
  sum = sum + k
\{ i*i \le a / \ a < (i+1)*(i+1) \}
```

⇒ while rule not directly applicable . . .

While Rule

Step 1: Find the loop invariant

- $P \equiv i * i \le a \land i \ge 0 \land k == 2 * i + 1 \land sum == (i + 1) * (i + 1)$ holds on entry to the loop
- ▶ To prove that P is an invariant, requires to prove that $\{P \land sum < a\} \ k = k + 2; i = i + 1; sum = sum + k \ \{P\}$
- ▶ It follows by the sequence rule and weakening:

Proof of loop invariance

```
{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }
         i \ge 0 /\ k+2==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum \le a }
k = k+2
{
              i>=0
         i+1>=1 / k==2*(i+1)+1 / sum==(i+1)*(i+1) / sum<=a }
i = i+1
         /\ sum==i*i
                                         /\ sum<=a }
{ i*i<=a /\ i>=1
              /\ k==2*i+1
                          /\ sum+k==i*i+k
                                          /\ sum+k<=a+k }
sum = sum+k
{ i*i <= a / i>=1 / k==2*i+1
                          \{ i*i \le a / i \ge 1 / k==2*i+1 \}
                          /\ sum==i*i+2*i+1 /\ sum<=a+k }
\{ i*i <= a / i>=1 / k==2*i+1 \}
                          { i*i <= a /  i>= 0  /  k==2*i+1
                          /\ sum == (i+1)*(i+1) }
```

$$\{P \land sum \le a\} \ k = k + 2; i = i + 1; sum = sum + k \ \{P\}$$
 while $sum \le a \text{ do } k = k + 2; i = i + 1; sum = sum + k \ \{P \land sum > a\}$

Now. $P \wedge sum > a$ is

{ $i*i <= a / a < (i+1)*(i+1) }$

Correctness of While-Rule

$$\frac{\{P \land B\} \ C \ \{P\}}{\{P\} \text{ while } B \text{ do } C \ \{P \land \neg B\}}$$

- ▶ Consider $S[while B \text{ do } C]\sigma = F(\sigma)$ where $F(\sigma) = B[B]\sigma = \text{true} \to F(S[C]\sigma), \sigma$
- ▶ Case $\forall n \in \mathbb{N}$, $\mathcal{B}[\![B]\!](\mathcal{S}[\![C]\!]^{(n)}\sigma) = \text{true}$: set $F(\sigma) = \bot$.
- ▶ Case $\exists n \in \mathbb{N}$, $\mathcal{B}\llbracket B \rrbracket (\mathcal{S} \llbracket C \rrbracket^{(n)} \sigma) = \text{false}$: let n_0 be minimal
- ▶ Let $\sigma \in P = (P \land B) \uplus (P \land \neg B)$
- ▶ Case $n_0 = 0$: $\sigma \in P \land \neg B$, then $F(\sigma) = \sigma \in P \land \neg B$. OK.
- ▶ Case $n_0 > 0$: $\sigma \in P \land B$, then $\sigma' = \mathcal{S}[\![C]\!] \sigma \in P \cup \{\bot\}$ by assumption. By induction, $F(\sigma') = \mathcal{S}[\![C]\!]^{(n_0-1)} \sigma' \in P \land \neg B \cup \{\bot\}$

Properties of Formal Verification

- requires more restrictions on assertions (e.g., use a certain logic) than monitoring
- full compliance of code with specification can be guaranteed
- scalability is a challenging research topic:
 - full automatization
 - manageable for small/medium examples
 - large examples require manual interaction
 - real programs use arrays and dynamic datastructures (pointers, objects)