Road Map

- Program verification
- Automatic program verification
 - Programs with loops
 - Programs with recursive function calls
Proving Program Correctness: General Approach

Program annotation

- Annotation $\text{@}F$ at program location L asserts that formula F is true whenever program control reaches L
- Special annotation: function specification
 - Precondition = specifies what should be true upon entering
 - Postcondition = specifies what must hold after executing

Proving Program Correctness

- Input: Program with annotations
- Translate input to first order formula f
- Validity of f implies program correctness
Outline

- Proving partial correctness
 - Programs with loops
Recall

A function f is **partially correct** if when f’s precondition is satisfied on entry and f terminates, then f’s postcondition is satisfied.
Proving Partial Correctness

Recall
A function f is **partially correct** if
when f’s precondition is satisfied on entry and f terminates,
then f’s postcondition is satisfied.

Automatic Verification
- Function + annotation is transformed to finite set of FOL formulae, the verification conditions (VCs)
- If all VCs are valid, then the function obeys its specification (partially correct)
Programs with Loops

Loop invariants

- Each loop must be annotated with a loop invariant, ΦL
- while loop: L must hold
 - at the beginning of each iteration before the loop condition is evaluated
- for loop: L must hold
 - after the loop initialization, and
 - before the loop condition is evaluated
Basic Paths: Loops

To handle loops, we break the function into basic paths.

<table>
<thead>
<tr>
<th>Basic Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ ← precondition or loop invariant</td>
</tr>
<tr>
<td>finite sequence of instructions</td>
</tr>
<tr>
<td>(on loop invariants)</td>
</tr>
<tr>
<td>@ ← loop invariant, assertion, or postcondition</td>
</tr>
</tbody>
</table>
Basic Paths: Conditionals

Basic paths split at conditionals

Replace each path $BP[\text{if } B \text{ then } S_1 \text{ else } S_2]$ by two paths

- $BP[\text{assume } B; S_1]$
- $BP[\text{assume } \neg B; S_2]$

Semantics of “assume B”

Execution ends unless B holds
Example: LinearSearch

```java
@pre 0 ≤ ℓ ∧ u < a.length
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e

bool LinearSearch(int[] a, int ℓ, int u, int e) {
    for
        @L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
        (int i := ℓ; i ≤ u; i := i + 1) {
            if (a[i] = e) return true;
        }
    return false;
}
```
Example: Basic Paths of LinearSearch

(1) \[\text{@pre } 0 \leq \ell \land u < a.length \]
\[i := \ell; \]
\[\text{\@L : } \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \]

(2) \[\text{\@L : } \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \]
\[\text{assume } i \leq u; \]
\[\text{assume } a[i] = e; \]
\[rv := \text{true}; \]
\[\text{\@post } rv \iff \exists j. \ell \leq j \leq u \land a[j] = e \]
Example: Basic Paths of LinearSearch

(3) \[\forall j. \ell \leq j < i \rightarrow a[j] \neq e \]

\begin{align*}
\text{assume } i \leq u; \\
\text{assume } a[i] \neq e; \\
i := i + 1;
\end{align*}

(4) \[\forall j. \ell \leq j < i \rightarrow a[j] \neq e \]

\begin{align*}
\text{assume } i > u; \\
rv := \text{false}; \\
\text{post } rv \iff \exists j. \ell \leq j \leq u \land a[j] = e
\end{align*}
Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

@pre

(1)

(3) L

(2),(4)

@post
Proving Partial Correctness

Goal

- Prove that annotated function f agrees with annotations
- Transform f to finite set of verification conditions VC
- Validity of VC implies that function behaviour agrees with annotations

Weakest precondition $wp(F, S)$

- Informally: What must hold before executing statement S to ensure that formula F holds afterwards?
- $wp(F, S) = \text{weakest formula such that executing } S \text{ results in formula that satisfies } F$
- For all states σ such that $\sigma \in wp(F, S)$: successor state $S[S] \sigma \in F$.
Weakest preconditions for each statement

- **Assumption:** What must hold before statement `assume B` is executed to ensure that `F` holds afterward?

 \[
 \text{wp}(F, \text{assume } B) \iff B \rightarrow F
 \]

- **Assignment:** What must hold before statement `x := e` is executed to ensure that `F[x]` holds afterward?

 \[
 \text{wp}(F[x], x := e) \iff F[e]
 \]

 ("substitute `x` with `e""")

- **Sequence of statements** `S_1; \ldots; S_n` (\(n > 1\)),
 \[
 \text{wp}(F, S_1; \ldots; S_n) \iff \text{wp}(\text{wp}(F, S_n), S_1; \ldots; S_{n-1})
 \]
Verifying Partial Correctness

Verification condition of basic path

@ \(F \)
\(S_1; \)
\(\ldots \)
\(S_n; \)
@ \(G \)

is defined as

\[F \rightarrow \wp(G, S_1; \ldots; S_n) \]

This verification condition is often denoted by the Hoare triple

\(\{ F \} S_1; \ldots; S_n \{ G \} \)
Proving Partial Correctness

Approach

- Input: Annotated program
- Compute the set P of all basic paths (finite)
- For all $p \in P$: generate verification condition $VC(p)$
- Check validity of $\bigwedge_{p \in P} VC(p)$

Theorem

If $\bigwedge_{p \in P} VC(p)$ is valid, then each function agrees with its annotation.
Example 1: VC of basic path

\begin{align*}
\text{(1)} \quad @ F : \quad & x \geq 0 \\
S_1 : \quad & x := x + 1; \\
@ G : \quad & x \geq 1
\end{align*}

The VC is

\[F \rightarrow \text{wp}(G, S_1) \]

That is,

\[\text{wp}(G, S_1) \]
\[\Leftrightarrow \text{wp}(x \geq 1, x := x + 1) \]
\[\Leftrightarrow (x \geq 1) \{ x \Rightarrow x + 1 \} \]
\[\Leftrightarrow x + 1 \geq 1 \]
\[\Leftrightarrow x \geq 0 \]

Therefore the VC of path (1)

\[x \geq 0 \rightarrow x \geq 0, \]

which is valid.
Example 2: VC of basic path (2) of LinearSearch

\(@L : \quad F : \, \ell \leq i \land \forall j. \, \ell \leq j < i \rightarrow a[j] \neq e \)

\(S_1 : \) assume \(i \leq u \);
\(S_2 : \) assume \(a[i] = e \);
\(S_3 : \) \(rv := true \);
\(\@post G : \, rv \leftrightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e \)

The VC is: \(F \rightarrow \text{wp}(G, S_1; S_2; S_3) \)

\(\text{wp}(G, S_1; S_2; S_3) \)
\(\leftrightarrow \text{wp}(\text{wp}(rv \leftrightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e, rv := true), S_1; S_2) \)
\(\leftrightarrow \text{wp}(true \leftrightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e, S_1; S_2) \)
\(\leftrightarrow \text{wp}(\exists j. \, \ell \leq j \leq u \land a[j] = e, S_1; S_2) \)
\(\leftrightarrow \text{wp}(\text{wp}(\exists j. \, \ell \leq j \leq u \land a[j] = e, \text{assume } a[i] = e), S_1) \)
\(\leftrightarrow \text{wp}(a[i] = e \rightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e, S_1) \)
\(\leftrightarrow \text{wp}(a[i] = e \rightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e, \text{assume } i \leq u) \)
\(\leftrightarrow i \leq u \rightarrow (a[i] = e \rightarrow \exists j. \, \ell \leq j \leq u \land a[j] = e) \)
Outline

- Proving partial correctness
 - Programs with recursive function calls
Basic Paths: Recursive Function Calls

- **Loops** produce unbounded number of paths
 - *loop invariants* cut loops to produce finite number of basic paths
- **Recursive calls** produce unbounded number of paths
 - *function specifications* cut function calls

Function specification

- Add *function summary* for each function call
- Instantiate pre- and postcondition with parameters of recursive call
Example: BinarySearch

The recursive function `BinarySearch` searches subarray of sorted array `a` of integers for specified value `e`.

sorted: weakly increasing order, i.e.

\[
\text{sorted}(a, \ell, u) \iff \forall i, j. \, \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
\]

Function specifications

- **Function postcondition (@post)**
 It returns `true` iff `a` contains the value `e` in the range `[\ell, u]`

- **Function precondition (@pre)**
 It behaves correctly only if `0 \leq \ell` and `u < a.length`
Example: BinarySearch

@pre $0 \leq \ell \land u < a.length \land \text{sorted}(a, \ell, u)$
@post $rv \leftrightarrow \exists i. \ell \leq i \leq u \land a[i] = e$

bool BinarySearch(int[] a, int \ell, int u, int e) {
 if ($\ell > u$) return false;
 else {
 int m := (\ell + u) \div 2;
 if ($a[m] = e$) return true;
 else if ($a[m] < e$) return BinarySearch(a, m + 1, u, e);
 else return BinarySearch(a, \ell, m - 1, e);
 }
}
Example: Binary Search with Function Call Assertions

@pre \(0 \leq \ell \wedge u < a.length \wedge \text{sorted}(a, \ell, u)\)
@post \(rv \leftrightarrow \exists i. \ell \leq i \leq u \wedge a[i] = e\)

```java
bool BinarySearch(int[] a, int \ell, int u, int e) {
    if (\ell > u) return false;
    else {
        int m := (\ell + u) \div 2;
        if (a[m] = e) return true;
        else if (a[m] < e) {
            @pre \(0 \leq m + 1 \wedge u < a.length \wedge \text{sorted}(a, m + 1, u)\);
            bool tmp := BinarySearch(a, m + 1, u, e);
            @post tmp \leftrightarrow \exists i. m + 1 \leq i \leq u \wedge a[i] = e; return tmp;
        } else {
            @pre \(0 \leq \ell \wedge m - 1 < a.length \wedge \text{sorted}(a, \ell, m - 1)\);
            bool tmp := BinarySearch(a, \ell, m - 1, e);
            @post tmp \leftrightarrow \exists i. \ell \leq i \leq m - 1 \wedge a[i] = e;
            return tmp;
        }
    }
}
```
Automatic verification of sequential programs

- **Goal:** Proof of partial correctness
- **Program specification**
 - Pre- and postconditions
 - Loop invariants
- **Tools**
 - Basic paths
 - Weakest precondition
 - Verification conditions
 - Function summaries