Table of Contents

Types and Type Correctness
JAUS: Java-Expressions (Ausdrücke)
Evaluation of Expressions
Type correctness
Result
Types and Type Correctness

- Large software systems: many people involved
 - project manager, designer, programmer, tester, . . .
- Essential: divide into components with clear defined interfaces and specifications
 - How to divide the problem?
 - How to divide the work?
 - How to divide the tests?

- Problems
 - Are suitable libraries available?
 - Do the components match each other?
 - Do the components fulfill their specification?
Requirements

- Programming language/environment has to ensure:
 - each component implements its interfaces
 - the implementation fulfills the specification
 - each component is used correctly

- Main problem: meet the interfaces and specifications
 - Minimal interface: management of names
 Which operations does the component offer?
 - Minimal specification: types
 Which types do the arguments and the result of the operations have?
 - See interfaces in Java
Types and Type Correctness

Questions

- Which kind of security do types provide?
- Which kind of errors can be detected by using types?
- How do we provide type safety?
- How can we formalize type safety?
Grammar for a subset of Java expressions

\[
\begin{align*}
x & ::= \ldots & \text{variables} \\
n & ::= 0 | 1 | \ldots & \text{numbers} \\
b & ::= \text{true} | \text{false} & \text{truth values} \\
e & ::= x | n | b | e + e | !e & \text{expressions}
\end{align*}
\]
Correct and Incorrect Expressions

- type correct expressions

```java
boolean flag;
...
0
true
17+4
!flag
```

- expressions with type errors

```java
int rain_since_April20;
boolean flag;
...
!rain_since_April20
flag+1
17+(!false)
!(2+3)
```
Typing Rules

- For each kind of expression a typing rule defines
 - if an expression is type correct and
 - how to obtain the result type of the expression from the types of the subexpressions.

- Five kinds of expressions
 - Constant numbers have type \texttt{int}.
 - Truth values have type \texttt{boolean}.
 - The expression $e_1 + e_2$ has type \texttt{int}, if e_1 and e_2 have type \texttt{int}.
 - The expression $!e$ has type \texttt{boolean}, if e has type \texttt{boolean}.
 - A variable x has the type, with which it was declared.
Formalization of “Type Correct Expressions”

The Language of Types

\[t ::= \text{int} \mid \text{boolean} \quad \text{types} \]

Typing judgment: expression \(e \) has type \(t \)

\[\vdash e : t \]
Formalization of “Typing Rules”

- A typing judgment is valid, if it is derivable according to the typing rules.
- To infer a valid typing judgment J we use a deduction system.
- A deduction system consists of a set of typing judgments and a set of typing rules.
- A typing rule (inference rule) is a pair $(J_1 \ldots J_n, J_0)$ which consists of a list of judgments (assumptions, $J_1 \ldots J_n$) and a judgment (conclusion, J_0) that is written as

 $$
 \frac{J_1 \ldots J_n}{J_0}
 $$

- If $n = 0$, a rule (ε, J_0) is an axiom.
Example: Typing Rules for JAUS

- A number n has type int.

$$
\frac{}{(\text{INT}) \quad \vdash n : \text{int}}
$$

- A truth value has type boolean.

$$
\frac{}{(\text{BOOL}) \quad \vdash b : \text{boolean}}
$$

- An expression $e_1 + e_2$ has type int if e_1 and e_2 has type int.

$$
\frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{(\text{ADD}) \quad \vdash e_1 + e_2 : \text{int}}
$$

- An expression $!e$ has type boolean, if e has type boolean.

$$
\frac{\vdash e : \text{boolean}}{(\text{NOT}) \quad \vdash !e : \text{boolean}}
$$
Derivation Trees and Validity

- A judgment J is valid if a derivation tree for J exists.
- A derivation tree for the judgment J is defined by

 1. \[\vspace{1em} \]

 2. \[\vspace{1em} \]
Example: Derivation Trees

- (INT) \[\vdash 0 : \text{int}\] is a derivation tree for judgment \[\vdash 0 : \text{int}\].

- (BOOL) \[\vdash \text{true} : \text{boolean}\] is a derivation tree for \[\vdash \text{true} : \text{boolean}\].

- The judgment \[\vdash 17 + 4 : \text{int}\] holds, because of the derivation tree

\[
(\text{ADD}) \quad \begin{array}{c}
(\text{INT}) \quad \vdash 17 : \text{int} \\
\hline
(\text{INT}) \quad \vdash 4 : \text{int}
\end{array}
\]

\[\vdash 17 + 4 : \text{int}\]
Variable

- Programs declare variables
- Programs use variables according to their declaration
- Declarations are collected in a *type environment*.

\[A ::= \emptyset \mid A, x : t \quad \text{type environment} \]

- An extended typing judgment contains a type environment: The expression \(e \) has the type \(t \) in the type environment \(A \).

\[A \vdash e : t \]

- Typing rule for variables:
 A variable has the type, with which it is declared.

\[\text{(VAR)} \quad \frac{x : t \in A}{A \vdash x : t} \]
Extension of the Remaining Typing Rules

- The typing rules propagate the environment.

\[
\begin{align*}
\text{(INT)} & \quad A \vdash n : \text{int} \\
\text{(BOOL)} & \quad A \vdash b : \text{int} \\
\text{(ADD)} & \quad A \vdash e_1 : \text{int} \quad A \vdash e_2 : \text{int} \\
& \quad A \vdash e_1 + e_2 : \text{int} \\
\text{(NOT)} & \quad A \vdash !e : \text{boolean} \\
& \quad A \vdash e : \text{boolean}
\end{align*}
\]
Example: Derivation with Variable

The declaration `boolean flag;` matches the type assumption

\[A = \emptyset, \text{flag} : \text{boolean} \]

Hence

\[
\frac{\text{flag} : \text{boolean} \in A}
{A \vdash \text{flag} : \text{boolean}}
\frac{A \vdash !\text{flag} : \text{boolean}}{A \vdash \text{flag} : \text{boolean}}
\]
Intermediate Result

- Formal system for
 - syntax of expressions and types (CFG, BNF)
 - type judgments
 - validity of type judgments

- Open questions
 - How to evaluate expressions?
 - Coherence between evaluation and type judgments
Evaluation of Expressions
Approach: Syntactic Rewriting

- Define a binary **reduction relation** \(e \rightarrow e' \) over expressions
- \(e \) is in relation to \(e' \) (\(e \rightarrow e' \)) if one computational step leads from \(e \) to \(e' \).
- **Example:**
 - \(5+2 \rightarrow 7 \)
 - \((5+2)+14 \rightarrow 7+14 \)
Result of Computations

- A value \(v \) is a number or a truth value.
- An expression can reach a value in many steps:
 - 0 steps: 0
 - 1 step: \(5+2 \rightarrow 7 \)
 - 2 steps: \((5+2)+14 \rightarrow 7+14 \rightarrow 21 \)
 - but
 - \(!4711 \)
 - \(1+\text{false} \)
 - \((1+2)+\text{false} \rightarrow 3+\text{false} \)
 - These expressions cannot perform a reduction step. They correspond to run-time errors.
 - Observation: these errors are type errors!
Formalization: Results and Reduction Steps

- A value is a number or a truth value.

\[v ::= n \mid b \] values

- One reduction step
 - If the two operands are numbers, we can add the two numbers to obtain a number as result.

\[
\text{(B-ADD)} \quad \frac{[n_1] + [n_2]}{[n_1 + n_2]}
\]

\[[n] \] stands for the syntactic representation of the number \(n \).

- If the operand of a negation is a truth value, the negation can be performed.

\[
\text{(B-TRUE)} \quad \frac{!\text{true}}{\text{false}} \quad (\text{B-FALSE}) \quad \frac{!\text{false}}{\text{true}}
\]
Formalization: Nested Expressions

What happens if the operands of operations are not values? Evaluate the subexpressions first.

- Negation

\[(B\text{-NEG}) \quad \frac{e \rightarrow e'}{!e \rightarrow !e'}\]

- Addition, first operand

\[(B\text{-ADD-L}) \quad \frac{e_1 \rightarrow e_1'}{e_1 + e_2 \rightarrow e_1' + e_2}\]

- Addition, second operand (only evaluate the second, if the first is a value)

\[(B\text{-ADD-R}) \quad \frac{e \rightarrow e'}{v + e \rightarrow v + e'}\]
Variable

- An expression that contains variables cannot be evaluated with the reduction steps.
- Eliminate variables with substitution, i.e., replace each variable with a value. Then reduction can proceed.
- Applying a substitution \([v_1/x_1, \ldots, v_n/x_n]\) to an expression \(e\), written as
 \[
e[v_1/x_1, \ldots, v_n/x_n]
 \]
 changes in \(e\) each occurrence of \(x_i\) to the corresponding value \(v_i\).
- Example:
 - \((!\text{flag})[\text{false}/\text{flag}] \equiv {!}\text{false}\)
 - \((\text{m+n})[25/\text{m}, 17/\text{n}] \equiv 25 + 17\)
Type Correctness Informally

- Type correctness: If there exists a type for an expression e, then e evaluates to a value in a finite number of steps.
- In particular, no run-time error happens.
- For the language JAUS the converse also holds (this is not correct in general, like in full Java).
- Prove in two steps (after Wright and Felleisen)
 Assume e has a type, then it holds:

 Progress: Either e is a value or there exists a reduction step for e.
 Preservation: If $e \rightarrow e'$, then e' and e have the same types.
Progress

If \(\vdash e : t \) is derivable, then \(e \) is a value or there exists \(e' \) with \(e \rightarrow e' \).

Proof

Induction over the derivation tree of \(\mathcal{J} = \vdash e : t \).

If (INT) \(\vdash n : \text{int} \) is the final step of \(\mathcal{J} \), then \(e \equiv n \) is a value (and \(t \equiv \text{int} \)).

If (BOOL) \(\vdash b : \text{boolean} \) is the last step of \(\mathcal{J} \), then \(e \equiv b \) is a value (and \(t \equiv \text{boolean} \)).
Progress: Addition

If $(\text{ADD}) \vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}$ is the final step of J, then it holds that $e \equiv e_1 + e_2$ and $t \equiv \text{int}$. Moreover, it is derivable that $\vdash e_1 : \text{int}$ and $\vdash e_2 : \text{int}$. The induction hypothesis tells us that e_1 is a value or there exists an e'_1 with $e_1 \rightarrow e'_1$.

- If $e_1 \rightarrow e'_1$ holds, we obtain that $e \equiv e_1 + e_2 \rightarrow e' \equiv e'_1 + e_2$ cause of rule (B-ADD-L). This is the desired result.

- In the case $e_1 \equiv v_1$ is a value, we concentrate on $\vdash e_2 : \text{int}$. The induction hypothesis says that e_2 is either a value or there exists an e'_2 with $e_2 \rightarrow e'_2$.
 - In the second case we can use rule (B-ADD-R) and get:
 $$e \equiv v_1 + e_2 \rightarrow e' \equiv v_1 + e'_2.$$
 - In the first case ($e_2 = v_1$), we can prove easily that $v_1 \equiv n_1$ and $v_2 \equiv n_2$ are both numbers. Hence, we can apply the rule (B-ADD) and obtain the desired e'.
Progress: Negation

If \((\text{NOT}) \quad \frac{\vdash e_1 : \text{boolean}}{\vdash \neg e_1 : \text{boolean}}\) is the last step of \(\mathcal{J}\), it holds that \(e \equiv \neg e_1\) and \(t \equiv \text{boolean}\) and \(\vdash e_1 : \text{boolean}\) is derivable.

Using the induction hypothesis (\(e_1\) is a value or there exists \(e'\) with \(e \rightarrow e'\)) there are two cases.

- In the case that \(e_1 \rightarrow e_1'\), we conclude that there exists \(e'\) with \(e \rightarrow e'\) using rule \((B-\text{NEG})\).
- If \(e_1 \equiv v\) is a value, it’s easy to prove that \(v\) is a truth value. Hence, we can apply the rule \((B-\text{TRUE})\) or \((B-\text{FALSE})\).

QED
Preservation

If $\vdash e : t$ and $e \rightarrow e'$, then $\vdash e' : t$.

Proof
Induction on the derivation $e \rightarrow e'$.

If \(\text{(B-ADD)} \) $\frac{n_1 + \lceil n_2 \rceil}{\lceil n_1 + n_2 \rceil}$ is the reduction step, then it holds that $t \equiv \text{int}$ because of \(\text{(ADD)} \). We can apply \(\text{(INT)} \) to $e' = \lceil n_1 + n_2 \rceil$ and obtain the desired result $\vdash \lceil n_1 + n_2 \rceil : \text{int}$.

If \(\text{(B-TRUE)} \) $\frac{!\text{true} \rightarrow \text{false}}{}$ is the reduction step it holds that $t \equiv \text{boolean}$ because of \(\text{(NOT)} \). We can apply \(\text{(BOOL)} \) to $e' = \text{false}$ and get the desired result $\vdash \text{false} : \text{boolean}$.

The case for rule \(\text{B-FALSE} \) is analogous.
Preservation: Addition

If (B-ADD-L) \[\frac{e_1 \rightarrow e'_1}{e_1 + e_2 \rightarrow e'_1 + e_2} \] is the occasion for the last step, we obtain through \(\vdash e : t \) that

\[
\frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{\vdash e_1 + e_2 : \text{int}}
\]

holds with \(e \equiv e_1 + e_2 \) and \(t \equiv \text{int} \).

From \(\vdash e_1 : \text{int} \) and \(e_1 \rightarrow e'_1 \) it follows by induction that \(\vdash e'_1 : \text{int} \) holds. Another application of (ADD) on \(\vdash e'_1 : \text{int} \) and \(\vdash e_2 : \text{int} \) yields \(\vdash e'_1 + e_2 : \text{int} \).

The case of rule (B-ADD-R) is analogous.
Preservation: Negation

If \((B-NEG)\) \[\frac{e_1 \rightarrow e'_1}{!e_1 \rightarrow !e'_1} \] is the occasion for the last step, we get through \(\vdash e : t\), that

\[(NOT) \quad \frac{\vdash e_1 : boolean}{\vdash !e_1 : boolean}\]

holds with \(e \equiv !e_1\) and \(t \equiv boolean\).

From \(\vdash e_1 : boolean\) and \(e_1 \rightarrow e'_1\) we conclude (using induction) that \(\vdash e'_1 : boolean\) holds. Another application of rule \((NOT)\) to \(\vdash e'_1 : boolean\) yields \(\vdash !e'_1 : boolean\).

QED
Elimination of Variables by Substitution

Intention
If $x_1 : t_1, \ldots, x_n : t_n \vdash e : t$ and $\vdash v_i : t_i$ (for all i), then it holds $\vdash e[v_1/x_1, \ldots, v_1/x_1] : t$.

Assertion
If $A', x_0 : t_0 \vdash e : t$ and $A' \vdash e_0 : t_0$, then it holds $A' \vdash e[e_0/x_0] : t$.

Prove
Induction over derivation of $A \vdash e : t$ with $A \equiv A', x_0 : t_0$.
If (VAR) $\frac{x : t \in A}{A \vdash x : t}$ is the last step of the derivation, there are two cases: Either $x \equiv x_0$ or not.
If $x \equiv x_0$ holds, then $e[e_0/x_0] \equiv e_0$. Because of the rule (VAR) it holds $t \equiv t_0$. Hence it holds $A' \vdash e_0 : t_0$ (use the assumption).
If $x \not\equiv x_0$, then $e[e_0/x_0] \equiv x$ and it holds $x : t \in A'$. Due to (VAR) it holds $A' \vdash x : t$.
Substitution: Constants

If $(\text{INT}) \quad \frac{\Gamma \vdash n : \text{int}}{\Gamma' \vdash n : \text{int}}$ is the last step, it holds $(\text{INT}) \quad \frac{\Gamma' \vdash n : \text{int}}{\Gamma' \vdash n : \text{int}}$.

If $(\text{BOOL}) \quad \frac{\Gamma \vdash b : \text{boolean}}{\Gamma' \vdash b : \text{boolean}}$ is the last step, it holds $(\text{BOOL}) \quad \frac{\Gamma' \vdash b : \text{boolean}}{\Gamma' \vdash b : \text{boolean}}$.
Substitution: Addition

If \((ADD) \quad \frac{A \vdash e_1 : \text{int} \quad A \vdash e_2 : \text{int}}{A \vdash e_1 + e_2 : \text{int}} \) is the last step, then the induction hypothesis yields \(A' \vdash e_1[e_0/x_0] : \text{int} \) and \(A' \vdash e_2[e_0/x_0] : \text{int} \). Apply rule \((ADD) \) yields \(A' \vdash (e_1 + e_2)[e_0/x_0] : \text{int} \).
Substitution: Negation

If \((\text{NOT})\) \[
\frac{A \vdash e_1 : \text{boolean}}{A \vdash \neg e_1 : \text{boolean}}
\] is the last step, the induction hypothesis yields \(A' \vdash e_1[e_0/x_0] : \text{boolean}\). Apply rule \((\text{NOT})\) yields \(A' \vdash (\neg e_1)[e_0/x_0] : \text{boolean}\).

QED
Theorem: Type Soundness of JAUS

- If $\vdash e : t$, then there exists a value v with $\vdash v : t$ and reduction steps $e_0 \rightarrow e_1, e_1 \rightarrow e_2, \ldots, e_{n-1} \rightarrow e_n$ with $e \equiv e_0$ and $e_n \equiv v$.

- If e contains variables, then we have to substitute them with suitable values (choose values with same types as the variables).