
Prof. Dr. Peter Thiemann
Manuel Geffken
Matthias Keil Summer Term 2013

Softwaretechnik
http://proglang.informatik.uni-freiburg.de/teaching/swt/2013/

Exercise Sheet 5

Exercise 1 (12 points)

The following Java class shows an implementation of queues in Java.

public class Queue {

protected int in,out;

protected Object[] buf;

public Queue (int capacity) {

buf = new Object[capacity];

}

public boolean empty() {

return in - out == 0;

}

public boolean full() {

return in - out == buf.length;

}

public void enqueue(Object o) {

buf[in % buf.length] = o;

in++;

}

public Object dequeue() {

Object o = buf[out % buf.length];

out++;

return o;

}

}

(i) Give reasonable pre- and postconditions (in first-order logic “syntax”) for all methods
and the constructor of the Queue class. In particular, keep in mind that integers may
overflow.

(ii) A weak class invariant is defined as a condition that holds between calls to methods
of the class, but not during the execution of such methods. Are there any weak class
invariants for the Queue class? If yes, state these class invariants.

http://proglang.informatik.uni-freiburg.de/teaching/swt/2013/

Exercise 2 (10 points)

The Iterator<E> interface has been presented in the lecture. Consider the following
ListIterator<E> interface, which is a simplified variant of the standard library’s list it-
erator. A ListIterator<E> supports back and forth navigation in lists.

public interface ListIterator <E> extends Iterator <E> {

/**

* Returns true if this list iterator has more elements when

* traversing the list in the forward direction.

*

* @return true if the list iterator has more elements when

* traversing the list in the forward direction

*/

boolean hasNext ();

/**

* Returns the next element in the list and advances the

cursor position.

*

* @return the next element in the list

*/

E next();

/**

* Returns true if this list iterator has more elements when

* traversing the list in the reverse direction.

*

* @return true if the list iterator has more elements when

* traversing the list in the reverse direction

*/

boolean hasPrevious ();

/**

* Returns the previous element in the list and moves the

cursor position backwards.

*

* @return the previous element in the list

*/

E previous ();

...

}

Provide a UML state machine representing the knowledge a user (caller) can gain about a
list iterator that implements the ListIterator<E> interface.
Consider all operations that change the state of the iterator, provide additional, or reduce
the knowledge about the list iterator’s state. You may omit those operations that leave the
state machine’s state unchanged.

Hint: You should be able to distinguish at least 9 states.

Exercise 3 (10 points)

Recapitulate the visitor pattern presented in the lecture.

v.visitConcreteElementA(this); v.visitConcreteElementB(this);

Visitor

visitConcreteElementA(ConcreteElementA)

visitConcreteElementB(ConcreteElementB)

accept(Visitor)

Client

ConcreteVisitor1

visitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

visitConcreteElementA(ConcreteElementA)

visitConcreteElementB(ConcreteElementB)

Element
ObjectStructure

ConcreteElementA

accept(Visitor v)

operationA() operationB()

accept(Visitor b)

ConcreteElementB

visitConcreteElementA(ConcreteElementA)

A concrete visitor (e.g. ConcreteVisitor1) wants to call operation operationA on Concre-
teElementA elements and operation operationB on ConcreteElementB elements. Based on
the class diagram shown above, provide a UML sequence diagram for applying the visitor
to two elements, one of each class.

