Prof. Dr. Peter Thiemann
Manuel Geffken
Matthias Keil Summer Term 2013

Softwaretechnik
http://proglang.informatik.uni-freiburg.de/teaching/swt/2013/

Exercise Sheet 12

Exercise 1: Javascript

Given the following Javascript code snippet:

s = "someyrandomystring";
.x = 42;
X

’

1. Use the JavaScript shell from http://www.squarefree.com/shell/shell.html to
execute the above Javascript code. Which results do you get?

2. Change the first or second line of the example, such that executing the third line
(s.x;) prints 42.

3. Explain the behavior you observe. What would you suggest to prevent such mysterious
bugs from happening?

Exercise 2: Types and Evaluation for JAUS
1. Which of the following JAUS expressions are type correct? Give a type derivation for

all type correct expressions. Assume that variable x is of type int and variable y is of
type boolean.
o 1+ true
23 + (47 — 11)
I('false)
s y+u
o ly

2. Evaluate the following JAUS expressions as far as possible. Which of the resulting
expressions are values?

o 234 (47— 11)
o (141)+ true

http://proglang.informatik.uni-freiburg.de/teaching/swt/2013/
http://www.squarefree.com/shell/shell.html

Exercise 3: Conditional Expression

Consider the language JAUS of Java expressions.

Variables >z u= ...

Numbers >5n == 0]1]...

Truth Values > b = true | false
Ezxpressions > e == z|n|blete]le

Extend the language with a conditional expression as known from Java, C or C++.

Types > t == int |boolean
Expressions 3 e = ~l(e?e : e
Judgment Fe:t
1. Define a typing rule (COND) for the conditional.
(COND)
Feg: Fep: Feg:
F (60 ? €1 . 62) :
2. Define evaluation rules for the conditional.
Values > v == n|b

Evaluation e — €'
(E-CONDI1)

(60 ? e 62) —
(E-COND2)

(’U() ?61 : 62)—>

(E-COND3)

(vo 7€ : ez) >

3. Extend the preservation proof from the lecture by treating one case for the conditional.

Exercise 4: Subtyping

Suppose we extend JAUS to distinguish the integer types byte, short, and int, where
byte <: short and short <: int (subtypes as in Java) and the respective typing rules for
constants:

(BYTE)
—128 <n <127
Fn:byte
(SHORT)
—32768 < n < 32767
F n :short

(INT)
—2147483648 < n < 2147483647

Fn:int

Argue why each of the following typing rules is sound. Provide a counterexample if a rule
is unsound.

1.
(MUL)
Fe;:int Fes:int
Fep-eg:int
2.
(MUL2)
F e : byte F e : byte
F ey -es: short
3.

(DIV)
Fe; : byte Fes : byte
Fei/es : byte

