# Software Engineering <br> Lecture 04: The B Specification Method 

Peter Thiemann

University of Freiburg, Germany

SS 2013

## The B specification method

- B-Method: formal approach to specification and development of software systems
- Developed by Jean-Raymond Abrial, late 1980es
- Definitive reference: The B-Book, Cambridge University Press
- Supports all phases of software development
- Emphasis on simplicity
- Amenable to formal verification
- Tool support: Atelier-B, B-Toolkit
- Industrial use
- Syntax http:///wwn.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax


## Abstract Machines

## Central concept: Abstract Machine

Example: The Ticket Dispenser


```
Ticket Dispenser in B
Abstract Machine Notation (AMN)
MACHINE Ticket
VARIABLES serve, next
INVARIANT serve : NAT & next : NAT & serve <= next
INITIALISATION serve, next := 0, 0
OPERATIONS
    ss <-- serve_next =
        PRE serve < next
        THEN ss, serve := serve + 1, serve + 1
        END ;
    tt <-- take_ticket =
        PRE true
        THEN tt, next := next, next + 1
        END
END
```


## MACHINE, VARIABLES, INVARIANT

## MACHINE name

- uniquely names a machine in a project

VARIABLES name,

- components of local machine state space
- all distinct names

INVARIANT formula
Conjunction of

- type of each variable, e.g., serve : NAT
- relations between variables, e.g., serve <= next


## OPERATIONS

List of operation definitions
output, ... <-- name (input, ...) =
PRE formula
THEN statement
END

- Name of operation
- Names of input and output parameters
- PRE precondition
- Must be true to invoke
- May be dropped if true
- THEN body: specification of output, effect on state space
- Must specify each output variable
- May update the machine state


## Statement / Assignment

## Simple Assignment

```
name := expression
```

Multiple Assignment

```
name, ... := expression, ...
```

- all distinct names on left hand side
- simultaneous assignment - evaluate all right hand sides, then assign to left hand sides all at once


## INITIALISATION

INITIALISATION statement

- possible initial states
- all variables of the machine state must be assigned


## Sets and Logic

## Sets

- B builds on typed set theory
- Standard mathematical notation for operations is ok, but we use the syntax of the tools
- Predefined sets:
- BOOL = \{ TRUE, FALSE \}
- INT, NAT, NAT1 machine integers and natural numbers (without 0)
- STRING with elements of the form "string content',
- Types of variables can be defined by predicates
- v : S the value of v is an element of set S
- $\mathrm{v}<$ : S the value of v is a subset of set S


## Set Formation

SETS declaration; ...

- another MACHINE clause
- declaration can be
- set-name: set with unspecified elements
- set-name $=\{$ element-name, ...\}: set with named elements
- example

SETS COLOR = \{red, green, blue\}; KEY; PERSON

## Set Expressions

Excerpt
If $S$ and $T$ are sets, then so are ...
$\},\{E\},\{E, \ldots\}$ empty set, singleton set, set enumeration \{x|P\} comprehension set
$\mathrm{S} \backslash / \mathrm{T}, \mathrm{S} / \backslash \mathrm{T}, \mathrm{S}-\mathrm{T}$ set union, set intersection, set difference
S*T
Cartesian product
POW (S), POW1 (S) power set, set of non-empty subsets

Properties of sets

$$
\begin{array}{ll}
\mathrm{E}: \mathrm{S}, \mathrm{E} /: \mathrm{S} & \text { element of, not element of } \\
\mathrm{S}<: \mathrm{T}, \mathrm{~S} /<: \mathrm{T} & \text { subset of, not subset of } \\
\mathrm{S} \ll: \mathrm{T}, \mathrm{~S} / \ll: \mathrm{T} & \text { strict subset of, not strict subset of } \\
\operatorname{card}(\mathrm{S}) & \text { cardinality }
\end{array}
$$

## Typed set expressions

$$
\begin{aligned}
& 1:: \mathbb{N} \quad \text { NAT }:: \mathbb{P}(\mathbb{N}) \\
& \begin{array}{c}
\text { SETS M }=\left\{x_{1}, \ldots, x_{n}\right\} \\
x_{i}:: M \quad \mathrm{M}:: \mathbb{P}(\mathrm{M})
\end{array} \\
& \left\}:: \mathbb{P}(A) \quad \frac{E_{i}:: A}{\left\{E_{1}, \ldots\right\}:: \mathbb{P}(A)} \quad \frac{P \Rightarrow x:: A}{\{x \mid P\}:: \mathbb{P}(A)}\right. \\
& S:: \mathbb{P}(A) \quad T:: \mathbb{P}(A) \\
& \overline{S \cup T:: \mathbb{P}(A) \quad S \cap T:: \mathbb{P}(A) \quad S \backslash T:: \mathbb{P}(A)} \\
& \frac{S:: \mathbb{P}(A) \quad T:: \mathbb{P}(B)}{S * T:: \mathbb{P}(A \times B)} \\
& \frac{S:: \mathbb{P}(A)}{\operatorname{PoW}(S):: \mathbb{P}(\mathbb{P}(A))} \\
& E:: A \quad S:: \mathbb{P}(A) \\
& E: S:: \text { Prop } \\
& S:: \mathbb{P}(A) \quad T:: \mathbb{P}(A) \\
& S<: T:: \text { Prop } \\
& \frac{S:: \mathbb{P}(A)}{\operatorname{card}(S):: \mathbb{N}}
\end{aligned}
$$

## First-Order Predicate Logic

- Atoms are expressions of type Prop
- Standard connectives

| $P \& Q$ | conjunction |
| :--- | :--- |
| $P$ or $Q$ | disjunction |
| $P=>Q$ | implication |
| $P \Leftrightarrow Q$ | equivalence |
| not $P$ | negation |
| $!(x) \cdot(P=>Q)$ | universal quantification |
| $\#(x) \cdot(P \& Q)$ | existential quantification |

- In quantification, predicate $P$ must fix the type of $x$
- Example
! (m). (m:NAT $=>$ \# (n). $(\mathrm{n}:$ NAT \& $m<n)) \mathrm{Fi}$


## Weakest Preconditions

## State Space

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation $=$ relation on state space
- Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

## State Space

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation $=$ relation on state space
- Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

- Formalized for operation PRE $P$ THEN $S$ END

1. Executable: $I \& P$
2. Preservation: if executable, does $I$ hold after $S$ ?

## State Space

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation $=$ relation on state space
- Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

- Formalized for operation PRE $P$ THEN $S$ END

1. Executable: $I \& P$
2. Preservation: if executable, does $I$ hold after $S$ ?

- Tool: Weakest Precondition (WP) [S] Q (a predicate)
- If $[S] Q$ holds before executing $S$, then $Q$ holds afterwards
- For all $R$ that hold before $S$ and guarantee that $Q$ holds afterwards, $R \Rightarrow[S] Q$


## State Space

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation $=$ relation on state space
- Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

- Formalized for operation PRE $P$ THEN $S$ END

1. Executable: $I \& P$
2. Preservation: if executable, does $I$ hold after $S$ ?

- Tool: Weakest Precondition (WP) [S] Q (a predicate)
- If $[S] Q$ holds before executing $S$, then $Q$ holds afterwards
- For all $R$ that hold before $S$ and guarantee that $Q$ holds afterwards, $R \Rightarrow[S] Q$
- WP can be calculated for each statement of the AMN


## Example

```
VARIABLES x, y
INVARIANT x:{0,1,2} & y:{0,1,2}
OPERATIONS
    f =
    y := max { 0, y - x }
END
```

Weakest precondition

$$
[y:=\max \{0, y-x\}](y>0)
$$

<=>

$$
\begin{array}{r}
\quad(y=1) \&(x=0) \\
\text { or }(y=2) \&(x=0) \\
\text { or }(y=2) \&(x=1)
\end{array}
$$

## Calculation of the Weakest Precondition

WP for Assignment

$$
[x:=E] P=P[E / x]
$$

Example

$$
[\mathrm{y}:=\max \{0, \mathrm{y}-\mathrm{x}\}](\mathrm{y}>0)
$$

$$
\begin{aligned}
& \Leftrightarrow(\max \{0, y-x\}>0) \\
& \Leftrightarrow(y-x>0) \\
& \Leftrightarrow \quad(y=1) \&(x=0) \\
& \quad \text { or } \quad(y=2) \&(x=0) \\
& \quad \text { or }(y=2) \&(x=1)
\end{aligned}
$$

## Calculation of the Weakest Precondition

WP for skip

$$
[\text { skip] } P=P
$$

The skip statement has no effect on the state.

## Calculation of the Weakest Precondition

WP for conditional

- Syntax: IF $E$ THEN $S$ ELSE $T$ END for statements $S$ and $T$
- Weakest precondition

$$
\text { [IF } E \text { THEN } S \text { ELSE } T \text { END }] P=(E \&[S] P) \text { or (not } E \&[T] P)
$$

## Example

```
    [IF x<5 THEN x := x+4 ELSE x := x-3 END] ( }\textrm{x}<<<7
<=>
    (x<5) & [x := x+4] (x < 7)
    or not (x < 5) & [x := x-3] (x < 7)
<=>
    (x<5) & (x+4<7)
    or ( }x>=5)&(x-3<7
<=>
    (x<3)
    or (x >= 5) & (x < 10)
```


## Machine Consistency

## INVARIANT and INITIALISATION

Objectives

1. The state space must not be empty
2. Initialization must be successful

INVARIANT I
State space is non-empty if \#(v). (I)
INITIALISATION T
Success if [T] I

## INVARIANT and INITIALISATION

Objectives

1. The state space must not be empty
2. Initialization must be successful

## INVARIANT I

State space is non-empty if \#(v). (I)
INITIALISATION T
Success if [T] I

## Example Ticket Dispenser

1. For serve $=0$ and next $=0$, serve <= next holds
2. [serve, next $:=0,0] I=0:$ NAT \& $0: N A T \& 0<=0$

## Proof Obligation for Operations

## Consider

- INVARIANT I
- operation PRE $P$ THEN $S$ END

Consistent if
$I \& P$ => [S] $I$

## Proof Obligation for Operations

## Consider

- INVARIANT I
- operation PRE $P$ THEN $S$ END

Consistent if

```
I & P => [S]I
```

Example Ticket Dispenser serve_next

```
(serve:NAT & next:NAT & serve <= next) & (serve < next) =>
[serve := serve + 1] (serve:NAT & next:NAT & serve <= next)
<=>
(serve:NAT & next:NAT & serve < next) =>
(serve:NAT & next:NAT & serve + 1 <= next)
```


## Relations

## Printer Permissions

```
MACHINE Access
SETS USER; PRINTER; OPTION; PERMISSION = { ok, noaccess }
CONSTANTS options
PROPERTIES
    options : PRINTER <-> OPTION &
    dom( options ) = PRINTER & ran( options ) = OPTION
VARIABLES access
INVARIANT access : USER <-> PRINTER
INITIALISATION access := {}
OPERATIONS
    add (uu, pp) =
    PRE uu:USER & pp:PRINTER
    THEN access := access \/ { uu |-> pp }
    END ;
```


## New Machine Clauses

## CONSTANTS name,

- name is a fixed, but unknown value
- Type determined by PROPERTIES

PROPERTIES formula

- Describes conditions that must holds on SETS and CONSTANTS
- Must specify the types of the constants
- Must not refer to VARIABLES

About clauses

- Clauses must appear in same order as in example!
- No forward references allowed


## Relational Operations

- Binary relation between $S$ and $T$
$S<->T=$ POW $(S * T)$
- Elements of a relation $R: S$ <-> $T$ are pairs, written as uu l-> $p p$, where $u u: S \& p p: T$
- Predefined symbols for domain and range of a relation $\operatorname{dom}(R)=\{\mathrm{s} \mid \mathrm{s}: S \& \#(\mathrm{t}) .(\mathrm{t}: T \& \mathrm{~s} \mid->\mathrm{t}: R)\}$ $\operatorname{ran}(R)=\{\mathrm{t} \mid \mathrm{t}: S \& \#(\mathrm{~s}) .(\mathrm{s}: S \& \mathrm{~s} \mid->\mathrm{t}: R)\}$


## Relational Operations

- Binary relation between $S$ and $T$
$S<->T=\mathrm{POW}(S * T)$
- Elements of a relation $R: S$ <-> $T$ are pairs, written as $u u$ |-> $p p$, where $u u: S \& p p: T$
- Predefined symbols for domain and range of a relation $\operatorname{dom}(R)=\{\mathrm{s} \mid \mathrm{s}: S \& \#(\mathrm{t}) .(\mathrm{t}: T \& \mathrm{~s} \mid->\mathrm{t}: R)\}$ $\operatorname{ran}(R)=\{\mathrm{t} \mid \mathrm{t}: S \& \#(\mathrm{~s}) .(\mathrm{s}: S \& \mathrm{~s} \mid->\mathrm{t}: R)\}$
- Example:

PRINTER $=\{$ PL, PLDUPLEX, PLCOLOR $\}$
options $=\{$ PL |-> ok, PLCOLOR |-> noaccess $\}$ dom (options) $=$ \{PL, PLCOLOR $\}$
ran (options) $=\{o k$, noaccess $\}$

## Printer Permissions (Cont'd)

```
MACHINE Access ...
OPERATIONS ...
    ban (uu) =
        PRE uu:USER
        THEN access := { uu } <<| access
        END ;
    nn <-- printnumquery (pp) =
        PRE pp:PRINTER
        THEN nn := card (access |> { pp })
        END ;
```


## Relational Operations II

Domain and range restriction
Let $\mathrm{R}: \mathrm{S}<->\mathrm{T}$
Domain restriction: Remove elements from dom (R)

- Keep domain elements in U : $\mathrm{U}<\mid \mathrm{R}=\{\mathrm{s}|->\mathrm{t}|(\mathrm{s} \mid->\mathrm{t}): \mathrm{R} \& \mathrm{~s}: \mathrm{U}\}$
- Drop domain elements in U (anti-restriction, subtraction): $\mathrm{U} \ll \mid \mathrm{R}=\{\mathrm{s}|->\mathrm{t}|(\mathrm{s} \mid->\mathrm{t}): \mathrm{R} \& \mathrm{~s} /: \mathrm{U}\}$

Range restriction: Remove elements from ran (R)

- Keep range elements in U : $R \quad \mid>U=\{s|->t|(s \mid->t): R \& t: U\}$
- Drop range elements in U : $R \quad \mid \gg U=\{s|->t|(s \mid->t): R \& t /: U\}$


## Relational Operations III

Further Relational Operations

$$
\begin{array}{ll}
\text { id }(S) & \text { identity relation } \\
R- & \text { inverse relation } \\
R[U] & \text { relational image } \\
(R 1 ; R 2) & \text { relational composition } \\
R 1<+R 2 & \text { relational overriding }
\end{array}
$$

## Relational Operations III

Further Relational Operations

| $\operatorname{id}(S)$ | identity relation |
| :--- | :--- |
| $R-$ | inverse relation |
| $R[U]$ | relational image |
| $(R 1 ; R 2)$ | relational composition |
| $R 1<+R 2$ | relational overriding |

Overriding ...

- R1<+R2 means R2 overrides R1
- Union of R1 and R2, but in the intersection of dom (R1) and dom (R2), the elements of R2 take precedence
- $\mathrm{R} 1<+\mathrm{R} 2=($ dom $(\mathrm{R} 2) \ll \mid R 1) ~ \ / R 2$


## Functions

## Functions

- In B a function is an unambiguous relation, i.e., a set of pairs
- Shorthand notation to indicate properties of functions

| $\mathrm{S}+->\mathrm{T}$ | partial function | $\mathrm{S}-->\mathrm{T}$ | total function |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}+-\gg \mathrm{T}$ | partial surjection | $\mathrm{S}--\gg \mathrm{T}$ | total surjection |
| $\mathrm{S}>+>\mathrm{T}$ | partial injection | $\mathrm{S}>->\mathrm{T}$ | total injection |
| $\mathrm{S}>+\gg \mathrm{T}$ | partial bijection | $\mathrm{S}>-\gg \mathrm{T}$ | total bijection |

- Using functions
- $f$ (E) function application
- \%x. (P|E) lambda abstraction, $P$ gives type of $x$


## Example: Reading Books / Declarations

```
MACHINE Reading
SETS READER; BOOK; COPY; RESPONSE = { yes, no }
CONSTANTS copyof
PROPERTIES copyof : COPY -->> BOOK
VARIABLES hasread, reading
INVARIANT
    hasread : READER <-> BOOK &
    reading : READER >+> COPY &
    (reading ; copyof) /\ hasread = {}
INITIALISATION
    hasread := {} || reading = {}
```


## Example: Reading Books / Operations (Excerpt)

 OPERATIONS (excerpt)```
start (rr, cc) =
    PRE
        rr:READER & cc:COPY & copyof (cc)/:hasread(rr) &
        rr/:dom (reading) & cc/:ran (reading)
    THEN
        reading := reading \/ { rr |-> cc }
    END
;
bb <-- currentquery (rr) =
    PRE
        rr:READER & rr:dom (reading)
    THEN
        bb := copyof (reading (rr))
    END
```


## Sequences and Arrays

## Sequences

- A sequence is a total function from an initial segment of NAT1 to another set
- seq (S) = (1..N --> S), where N:NAT
- Notation for manipulating sequences: formation, concatenation, first, last, etc

Arrays

- An array is a partial function from an initial segment of NAT1 to another set
- (1..N +-> S), where N:NAT
- Notation for updating arrays
a (i) $:=\mathrm{E}=\mathrm{a}:=\mathrm{a}\langle+\{\mathrm{i} \mid->\mathrm{E}\}$


## Nondeterminism

## Nondeterminism in Specifications

- Up to now: high-level programming with sets
- deterministic machines
- abstraction from particular data structures
- abstraction from realization of operations
- Further abstraction
- specification may allow a range of acceptable behaviors
- specification describes possible choices
- subsequent refinement narrows down towards an implementation
- This section
- AMN operations that exhibit nondeterminism


## Example: Jukebox / Declarations

MACHINE Jukebox
SETS TRACK
CONSTANTS limit
PROPERTIES limit:NAT1
VARIABLES credit, playset
INVARIANT credit:NAT \& credit<=limit \& playset<:TRACK INITIALISATION credit, playset := 0, \{\}

OPERATIONS

```
pay (cc) =
    PRE cc:NAT1
    THEN credit := min ( {credit + cc, limit}) END ;
```


## Example: Jukebox / Operations (excerpt) operations

```
tt <-- play =
    PRE playset /= {}
    THEN ANY tr WHERE tr:playset
        THEN tt := tr || playset := playset - {tr}
        END
    END
select (tt) =
    PRE credit>0 & tt:TRACK
    THEN playset := playset \/ {tt}
        || CHOICE credit := credit - 1
                OR skip
                END
    END
```


## ANY statement

ANY $x$ WHERE $Q$ THEN $S$ END

- $x$ fresh variable, only visible in $Q$ and $S$
- Q predicate; type of $x$; other constraints
- $S$ the body statement
- executes $S$ with an arbitrary value for $x$ fulfilling $Q$


## Examples

1. ANY n WHERE $\mathrm{n}:$ NAT1 THEN total := total*n END
2. ANY t WHERE $\mathrm{t}:$ NAT \& $\mathrm{t}<=\mathrm{total} \& 2 * \mathrm{t}>=\mathrm{total}$ THEN total := t END

## ANY weakest precondition

## [ANY $x$ WHERE $Q$ THEN $S$ END] $P=!(x)$. $(Q \Rightarrow[S] P)$

## Examples

1. [ANY n WHERE $\mathrm{n}:$ NAT1 THEN total := total*n END] (total > 1)
$=!(n) .(n: N A T 1 \Rightarrow$ [total $:=$ total $* n]$ (total > 1))
$=!(n) \cdot\left(n:\right.$ NAT1 $\Rightarrow$ (total $\left.{ }^{n} \mathrm{n}>1\right)$ )
$=($ total $>1)$
2. [ANY t WHERE $\mathrm{t}:$ NAT \& $\mathrm{t}<=\mathrm{total} \& 2 * \mathrm{t}>=$ total ...] (total > 1 )
$=!(\mathrm{t}) .(\mathrm{t}:$ NAT \& $\mathrm{t}<=$ total \& $2 * \mathrm{t}>=$ total $=>$ [total $:=\mathrm{t}$ ] (total $>1)$ )
$=!(t) .(t: N A T \& t<=t o t a l \& 2 * t>=$ total $=>(t>1))$
$=($ total $>2)$

## CHOICE statement

## CHOICE $S_{1}$ OR $S_{2}$ OR $\ldots$ END

- choice between unrelated statements $S_{1}, S_{2}, \ldots$

```
Example
Outcome of a driving test
CHOICE result := pass || licences := licences \/ \{examinee\}
OR result := fail
END
```


## CHOICE weakest precondition

## [CHOICE $S$ OR $T$ END] $P=[S] P$ \& [ $T] P$

## Example

Check that all licenced persons are old enough.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { CHOICE result }:=\text { pass } \| \\
\text { licences }:=\text { licences } \backslash / \text { \{examinee\} } \\
\text { OR result }:=\text { fail } \\
\text { END }
\end{array}\right] \text { (licences<:ofAge) }} \\
& =\quad \underset{\text { \& }}{\left[\begin{array}{l}
\text { result }:=\text { pass }| | \\
\text { licences }:=\text { licences } \backslash / \text { \{examinee }\}
\end{array}\right] \text { (licences<:ofAge) }} \\
& =\text { [licences := licences } \backslash / \text { \{examinee\}](licences<:ofAge) } \\
& \text { \& (licences<:ofAge) } \\
& =\text { (licences<:ofAge) \& examinee:ofAge }
\end{aligned}
$$

## Refinement

## Refinement

- Refinement formalizes design decisions
- Transforms specification towards implementation
- In B, refinement comes with proof obligations that relate the participating machines


## Data refinement

- Formalizes change of data representation
- Usually from abstract to concrete
- Example: set $\rightarrow$ list or array


## Refinement of nondeterminism

- Formalizes selection of particular behavior from a nondeterministic specification
- Refined operations are "more deterministic"


## Example: Jukebox / Declarations

```
REFINEMENT JukeboxR
REFINES Jukebox
CONSTANTS freefreq
PROPERTIES freefreq:NAT1
VARIABLES creditr, playlist, free
INVARIANT
    creditr:NAT & creditr = credit &
    playlist:iseq(TRACK) & ran (playlist) = playset &
    free:0..freefreq
INITIALISATION
    creditr:=0 ; playlist:= [] ; free:=0
```


## Example: Jukebox / Operations (excerpt)

```
select (tt) =
    BEGIN
        IF tt/:ran (playlist) THEN playlist := playlist <- tt END ;
        IF free = freefreq
        THEN CHOICE free := O OR creditr := creditr-1 END
        ELSE free := free+1 ; creditr := creditr-1
        END
    END
;
tt <-- play =
    PRE playlist /= []
    BEGIN tt := first (playlist) ;
        playlist := tail (playlist)
    END
```


## Proof Obligation for Refinement

- INVARIANT of the REFINEMENT specifies the linking invariant between state spaces of original and refinement
- Let INVARIANT I in original and INVARIANT IR in refinement
- For INITIALISATION T in original and INITIALISATION TR in the refinement, it must hold that
[TR] (not [T] (not IR))


## Proof Obligation for Refinement

- INVARIANT of the REFINEMENT specifies the linking invariant between state spaces of original and refinement
- Let INVARIANT I in original and INVARIANT IR in refinement
- For INITIALISATION T in original and INITIALISATION TR in the refinement, it must hold that
[TR] (not [T] (not IR))
- For operation PRE P THEN S END in original and PRE PR THEN SR END in refinement, it must hold that
I \& IR \& P => [SR] (not [S] (not IR))


## Summary

- B - an industrial strength formal method that supports all phases of software development
- Approach:
- start with high-level spec
- apply refinement steps until level of implementation reached
- (code generation tools exist)
- Each refinement step results in proof obligations that must be discharged
- Omitted from lecture
- structuring: machine parameters, inclusion, extension, state and type export
- implementation machines, loops, library machines
- more notation...

