
Software Engineering
Lecture 04: The B Specification Method

Peter Thiemann

University of Freiburg, Germany

SS 2013

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 50

The B specification method

I B-Method: formal approach to specification and development of
software systems

I Developed by Jean-Raymond Abrial, late 1980es

I Definitive reference: The B-Book, Cambridge University Press

I Supports all phases of software development

I Emphasis on simplicity

I Amenable to formal verification

I Tool support: Atelier-B, B-Toolkit

I Industrial use

I Syntax http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 50

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax

Abstract Machines

Abstract Machines

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 50

Abstract Machines

Central concept: Abstract Machine
Example: The Ticket Dispenser

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 50

Abstract Machines

Ticket Dispenser in B
Abstract Machine Notation (AMN)

MACHINE Ticket

VARIABLES serve, next

INVARIANT serve : NAT & next : NAT & serve <= next

INITIALISATION serve, next := 0, 0

OPERATIONS

ss <-- serve_next =

PRE serve < next

THEN ss, serve := serve + 1, serve + 1

END ;

tt <-- take_ticket =

PRE true

THEN tt, next := next, next + 1

END

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 50

Abstract Machines

MACHINE, VARIABLES, INVARIANT

MACHINE name

I uniquely names a machine in a project

VARIABLES name, ...

I components of local machine state space

I all distinct names

INVARIANT formula

Conjunction of

I type of each variable, e.g., serve : NAT

I relations between variables, e.g., serve <= next

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 50

Abstract Machines

OPERATIONS

List of operation definitions

output, ... <-- name (input, ...) =

PRE formula

THEN statement

END

I Name of operation

I Names of input and output parameters
I PRE precondition

I Must be true to invoke
I May be dropped if true

I THEN body: specification of output, effect on state space
I Must specify each output variable
I May update the machine state

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 50

Abstract Machines

Statement / Assignment

Simple Assignment

name := expression

Multiple Assignment

name, ... := expression, ...

I all distinct names on left hand side

I simultaneous assignment — evaluate all right hand sides, then assign
to left hand sides all at once

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 50

Abstract Machines

INITIALISATION

INITIALISATION statement

I possible initial states

I all variables of the machine state must be assigned

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 50

Sets and Logic

Sets and Logic

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 50

Sets and Logic

Sets

I B builds on typed set theory

I Standard mathematical notation for operations is ok, but we use the
syntax of the tools

I Predefined sets:
I BOOL = { TRUE, FALSE }
I INT, NAT, NAT1 machine integers and natural numbers (without 0)
I STRING with elements of the form "string content’’

I Types of variables can be defined by predicates
I v:S the value of v is an element of set S
I v<:S the value of v is a subset of set S

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 50

Sets and Logic

Set Formation

SETS declaration; ...

I another MACHINE clause
I declaration can be

I set-name : set with unspecified elements
I set-name = { element-name, ...}: set with named elements

I example

SETS COLOR = {red, green, blue}; KEY; PERSON

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 50

Sets and Logic

Set Expressions
Excerpt

If S and T are sets, then so are . . .

{}, {E}, {E,...} empty set, singleton set, set enumeration
{x|P} comprehension set
S\/T, S/\T, S-T set union, set intersection, set difference
S*T Cartesian product
POW(S), POW1(S) power set, set of non-empty subsets

Properties of sets

E:S, E/:S element of, not element of
S<:T, S/<:T subset of, not subset of
S<<:T, S/<<:T strict subset of, not strict subset of
card(S) cardinality

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 50

Sets and Logic

Typed set expressions

1 :: N NAT :: P(N)
SETS M = {x1, . . . , xn}
xi :: M M :: P(M)

{} :: P(A)
Ei :: A

{E1, . . . } :: P(A)

P ⇒ x :: A

{x | P} :: P(A)

S :: P(A) T :: P(A)

S ∪ T :: P(A) S ∩ T :: P(A) S \ T :: P(A)

S :: P(A) T :: P(B)

S ∗ T :: P(A× B)

S :: P(A)

POW(S) :: P(P(A))

E :: A S :: P(A)

E : S :: Prop

S :: P(A) T :: P(A)

S <: T :: Prop

S :: P(A)

card(S) :: N

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 50

Sets and Logic

First-Order Predicate Logic

I Atoms are expressions of type Prop

I Standard connectives
P & Q conjunction
P or Q disjunction
P => Q implication
P <=> Q equivalence
not P negation
!(x).(P=>Q) universal quantification
#(x).(P&Q) existential quantification

I In quantification, predicate P must fix the type of x

I Example

!(m).(m:NAT => #(n).(n:NAT & m < n))Fi

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 50

Weakest Preconditions

Weakest Preconditions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 50

Weakest Preconditions

State Space

I State space of a B machine = type of its variables restricted by
invariant I

I Specification of operation = relation on state space
I Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

I Formalized for operation PRE P THEN S END

1. Executable: I & P

2. Preservation: if executable, does I hold after S ?

I Tool: Weakest Precondition (WP) [S]Q (a predicate)
I If [S]Q holds before executing S , then Q holds afterwards
I For all R that hold before S and guarantee that Q holds afterwards,

R => [S]Q

I WP can be calculated for each statement of the AMN

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 50

Weakest Preconditions

State Space

I State space of a B machine = type of its variables restricted by
invariant I

I Specification of operation = relation on state space
I Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

I Formalized for operation PRE P THEN S END

1. Executable: I & P

2. Preservation: if executable, does I hold after S ?

I Tool: Weakest Precondition (WP) [S]Q (a predicate)
I If [S]Q holds before executing S , then Q holds afterwards
I For all R that hold before S and guarantee that Q holds afterwards,

R => [S]Q

I WP can be calculated for each statement of the AMN

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 50

Weakest Preconditions

State Space

I State space of a B machine = type of its variables restricted by
invariant I

I Specification of operation = relation on state space
I Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

I Formalized for operation PRE P THEN S END

1. Executable: I & P

2. Preservation: if executable, does I hold after S ?

I Tool: Weakest Precondition (WP) [S]Q (a predicate)
I If [S]Q holds before executing S , then Q holds afterwards
I For all R that hold before S and guarantee that Q holds afterwards,

R => [S]Q

I WP can be calculated for each statement of the AMN

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 50

Weakest Preconditions

State Space

I State space of a B machine = type of its variables restricted by
invariant I

I Specification of operation = relation on state space
I Questions

1. Is an operation executable?
2. Does an operation preserve the invariant?

I Formalized for operation PRE P THEN S END

1. Executable: I & P

2. Preservation: if executable, does I hold after S ?

I Tool: Weakest Precondition (WP) [S]Q (a predicate)
I If [S]Q holds before executing S , then Q holds afterwards
I For all R that hold before S and guarantee that Q holds afterwards,

R => [S]Q

I WP can be calculated for each statement of the AMN

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 50

Weakest Preconditions

Example

VARIABLES x, y

INVARIANT x:{0,1,2} & y:{0,1,2}

OPERATIONS

f =

y := max { 0, y - x }

END

Weakest precondition

[y := max { 0, y - x }] (y > 0)

<=>

(y = 1) & (x = 0)

or (y = 2) & (x = 0)

or (y = 2) & (x = 1)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 50

Weakest Preconditions

Calculation of the Weakest Precondition
WP for Assignment

[x := E]P = P[E/x]

Example

[y := max { 0, y - x }] (y > 0)

<=>

(max { 0, y - x } > 0)

<=>

(y - x > 0)

<=>

(y = 1) & (x = 0)

or (y = 2) & (x = 0)

or (y = 2) & (x = 1)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 50

Weakest Preconditions

Calculation of the Weakest Precondition
WP for skip

[skip]P = P

The skip statement has no effect on the state.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 50

Weakest Preconditions

Calculation of the Weakest Precondition
WP for conditional

I Syntax: IF E THEN S ELSE T END

for statements S and T
I Weakest precondition

[IF E THEN S ELSE T END]P = (E&[S]P) or (not E&[T]P)

Example

[IF x<5 THEN x := x+4 ELSE x := x-3 END] (x < 7)

<=>

(x < 5) & [x := x+4] (x < 7)

or not (x < 5) & [x := x-3] (x < 7)

<=>

(x < 5) & (x+4 < 7)

or (x >= 5) & (x-3 < 7)

<=>

(x < 3)

or (x >= 5) & (x < 10)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 50

Machine Consistency

Machine Consistency

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 50

Machine Consistency

INVARIANT and INITIALISATION

Objectives

1. The state space must not be empty

2. Initialization must be successful

INVARIANT I

State space is non-empty if #(v).(I)

INITIALISATION T

Success if [T]I

Example Ticket Dispenser

1. For serve = 0 and next = 0, serve <= next holds

2. [serve, next := 0, 0]I = 0:NAT & 0:NAT & 0<=0

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 50

Machine Consistency

INVARIANT and INITIALISATION

Objectives

1. The state space must not be empty

2. Initialization must be successful

INVARIANT I

State space is non-empty if #(v).(I)

INITIALISATION T

Success if [T]I

Example Ticket Dispenser

1. For serve = 0 and next = 0, serve <= next holds

2. [serve, next := 0, 0]I = 0:NAT & 0:NAT & 0<=0

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 50

Machine Consistency

Proof Obligation for Operations

Consider

I INVARIANT I

I operation PRE P THEN S END

Consistent if

I & P => [S]I

Example Ticket Dispenser serve next

(serve:NAT & next:NAT & serve <= next) & (serve < next) =>

[serve := serve + 1] (serve:NAT & next:NAT & serve <= next)

<=>

(serve:NAT & next:NAT & serve < next) =>

(serve:NAT & next:NAT & serve + 1 <= next)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 50

Machine Consistency

Proof Obligation for Operations

Consider

I INVARIANT I

I operation PRE P THEN S END

Consistent if

I & P => [S]I

Example Ticket Dispenser serve next

(serve:NAT & next:NAT & serve <= next) & (serve < next) =>

[serve := serve + 1] (serve:NAT & next:NAT & serve <= next)

<=>

(serve:NAT & next:NAT & serve < next) =>

(serve:NAT & next:NAT & serve + 1 <= next)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 50

Relations

Relations

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 50

Relations

Printer Permissions

MACHINE Access

SETS USER; PRINTER; OPTION; PERMISSION = { ok, noaccess }

CONSTANTS options

PROPERTIES

options : PRINTER <-> OPTION &

dom(options) = PRINTER & ran(options) = OPTION

VARIABLES access

INVARIANT access : USER <-> PRINTER

INITIALISATION access := {}

OPERATIONS

add (uu, pp) =

PRE uu:USER & pp:PRINTER

THEN access := access \/ { uu |-> pp }

END ;

...

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 50

Relations

New Machine Clauses

CONSTANTS name, ...

I name is a fixed, but unknown value

I Type determined by PROPERTIES

PROPERTIES formula

I Describes conditions that must holds on SETS and CONSTANTS

I Must specify the types of the constants

I Must not refer to VARIABLES

About clauses

I Clauses must appear in same order as in example!

I No forward references allowed

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 50

Relations

Relational Operations

I Binary relation between S and T

S <-> T = POW (S *T)

I Elements of a relation R : S <-> T are pairs,
written as uu |-> pp , where uu :S & pp :T

I Predefined symbols for domain and range of a relation

dom (R) = {s | s:S & #(t).(t:T & s |-> t :R) }
ran (R) = {t | t:S & #(s).(s:S & s |-> t :R) }

I Example:
PRINTER = {PL, PLDUPLEX, PLCOLOR}
options = { PL |-> ok, PLCOLOR |-> noaccess }
dom (options) = {PL, PLCOLOR}
ran (options) = {ok, noaccess}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 50

Relations

Relational Operations

I Binary relation between S and T

S <-> T = POW (S *T)

I Elements of a relation R : S <-> T are pairs,
written as uu |-> pp , where uu :S & pp :T

I Predefined symbols for domain and range of a relation

dom (R) = {s | s:S & #(t).(t:T & s |-> t :R) }
ran (R) = {t | t:S & #(s).(s:S & s |-> t :R) }

I Example:
PRINTER = {PL, PLDUPLEX, PLCOLOR}
options = { PL |-> ok, PLCOLOR |-> noaccess }
dom (options) = {PL, PLCOLOR}
ran (options) = {ok, noaccess}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 50

Relations

Printer Permissions (Cont’d)

MACHINE Access ...

OPERATIONS ...

ban (uu) =

PRE uu:USER

THEN access := { uu } <<| access

END ;

nn <-- printnumquery (pp) =

PRE pp:PRINTER

THEN nn := card (access |> { pp })

END ;

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 50

Relations

Relational Operations II
Domain and range restriction

Let R:S<->T

Domain restriction: Remove elements from dom (R)

I Keep domain elements in U:
U <| R = { s |-> t | (s |-> t):R & s:U }

I Drop domain elements in U (anti-restriction, subtraction):
U <<| R = { s |-> t | (s |-> t):R & s/:U }

Range restriction: Remove elements from ran (R)

I Keep range elements in U:
R |> U = { s |-> t | (s |-> t):R & t:U }

I Drop range elements in U:
R |>> U = { s |-> t | (s |-> t):R & t/:U }

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 50

Relations

Relational Operations III
Further Relational Operations

id(S) identity relation
R- inverse relation
R[U] relational image
(R1;R2) relational composition
R1<+R2 relational overriding

Overriding . . .

I R1<+R2 means R2 overrides R1

I Union of R1 and R2, but in the intersection of dom (R1) and dom

(R2), the elements of R2 take precedence

I R1<+R2 = (dom (R2) <<| R1) \/ R2

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 50

Relations

Relational Operations III
Further Relational Operations

id(S) identity relation
R- inverse relation
R[U] relational image
(R1;R2) relational composition
R1<+R2 relational overriding

Overriding . . .

I R1<+R2 means R2 overrides R1

I Union of R1 and R2, but in the intersection of dom (R1) and dom

(R2), the elements of R2 take precedence

I R1<+R2 = (dom (R2) <<| R1) \/ R2

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 50

Functions

Functions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 50

Functions

Functions

I In B a function is an unambiguous relation, i.e., a set of pairs

I Shorthand notation to indicate properties of functions

S+->T partial function
S+->>T partial surjection
S>+>T partial injection
S>+>>T partial bijection

S-->T total function
S-->>T total surjection
S>->T total injection
S>->>T total bijection

I Using functions
I f (E) function application
I %x.(P|E) lambda abstraction, P gives type of x

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 50

Functions

Example: Reading Books / Declarations

MACHINE Reading

SETS READER; BOOK; COPY; RESPONSE = { yes, no }

CONSTANTS copyof

PROPERTIES copyof : COPY -->> BOOK

VARIABLES hasread, reading

INVARIANT

hasread : READER <-> BOOK &

reading : READER >+> COPY &

(reading ; copyof) /\ hasread = {}

INITIALISATION

hasread := {} || reading = {}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 50

Functions

Example: Reading Books / Operations (Excerpt)
OPERATIONS (excerpt)

start (rr, cc) =

PRE

rr:READER & cc:COPY & copyof (cc)/:hasread(rr) &

rr/:dom (reading) & cc/:ran (reading)

THEN

reading := reading \/ { rr |-> cc }

END

;

bb <-- currentquery (rr) =

PRE

rr:READER & rr:dom (reading)

THEN

bb := copyof (reading (rr))

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 50

Functions

Sequences and Arrays

Sequences

I A sequence is a total function from an initial segment of NAT1 to
another set

I seq (S) = (1..N --> S), where N:NAT

I Notation for manipulating sequences: formation, concatenation, first,
last, etc

Arrays

I An array is a partial function from an initial segment of NAT1 to
another set

I (1..N +-> S), where N:NAT

I Notation for updating arrays

a (i) := E = a := a <+ { i |-> E }

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 36 / 50

Nondeterminism

Nondeterminism

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 37 / 50

Nondeterminism

Nondeterminism in Specifications

I Up to now: high-level programming with sets
I deterministic machines
I abstraction from particular data structures
I abstraction from realization of operations

I Further abstraction
I specification may allow a range of acceptable behaviors
I specification describes possible choices
I subsequent refinement narrows down towards an implementation

I This section
I AMN operations that exhibit nondeterminism

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 38 / 50

Nondeterminism

Example: Jukebox / Declarations

MACHINE Jukebox

SETS TRACK

CONSTANTS limit

PROPERTIES limit:NAT1

VARIABLES credit, playset

INVARIANT credit:NAT & credit<=limit & playset<:TRACK

INITIALISATION credit, playset := 0, {}

OPERATIONS

pay (cc) =

PRE cc:NAT1

THEN credit := min ({credit + cc, limit}) END ;

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 39 / 50

Nondeterminism

Example: Jukebox / Operations (excerpt)
OPERATIONS

tt <-- play =

PRE playset /= {}

THEN ANY tr WHERE tr:playset

THEN tt := tr || playset := playset - {tr}

END

END

;

select (tt) =

PRE credit>0 & tt:TRACK

THEN playset := playset \/ {tt}

|| CHOICE credit := credit - 1

OR skip

END

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 40 / 50

Nondeterminism

ANY statement

ANY x WHERE Q THEN S END

I x fresh variable, only visible in Q and S

I Q predicate; type of x ; other constraints

I S the body statement

I executes S with an arbitrary value for x fulfilling Q

Examples

1. ANY n WHERE n:NAT1 THEN total := total*n END

2. ANY t WHERE t:NAT & t<=total & 2*t>= total

THEN total := t END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 41 / 50

Nondeterminism

ANY weakest precondition

[ANY x WHERE Q THEN S END]P = !(x).(Q => [S]P)

Examples

1. [ANY n WHERE n:NAT1 THEN total := total*n END] (total > 1)

= !(n).(n:NAT1 => [total := total*n] (total > 1))

= !(n).(n:NAT1 => (total*n > 1))

= (total > 1)

2. [ANY t WHERE t:NAT & t<=total & 2*t>= total ...] (total > 1)

= !(t).(t:NAT & t<=total & 2*t>= total => [total := t](total > 1))

= !(t).(t:NAT & t<=total & 2*t>= total => (t > 1))

= (total > 2)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 42 / 50

Nondeterminism

CHOICE statement

CHOICE S 1 OR S 2 OR ... END

I choice between unrelated statements S 1, S 2, . . .

Example

Outcome of a driving test

CHOICE result := pass || licences := licences \/ {examinee}

OR result := fail

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 43 / 50

Nondeterminism

CHOICE weakest precondition

[CHOICE S OR T END]P = [S]P & [T]P

Example

Check that all licenced persons are old enough.


CHOICE result := pass ||

licences := licences \/ {examinee}

OR result := fail

END

 (licences<:ofAge)

=

[
result := pass ||

licences := licences \/ {examinee}

]
(licences<:ofAge)

& [result := fail] (licences<:ofAge)

=
[licences := licences \/ {examinee}](licences<:ofAge)

& (licences<:ofAge)

= (licences<:ofAge) & examinee:ofAge

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 44 / 50

Refinement

Refinement

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 45 / 50

Refinement

Refinement

I Refinement formalizes design decisions

I Transforms specification towards implementation

I In B, refinement comes with proof obligations that relate the
participating machines

Data refinement

I Formalizes change of data representation

I Usually from abstract to concrete

I Example: set → list or array

Refinement of nondeterminism

I Formalizes selection of particular behavior from a nondeterministic
specification

I Refined operations are “more deterministic”

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 46 / 50

Refinement

Example: Jukebox / Declarations

REFINEMENT JukeboxR

REFINES Jukebox

CONSTANTS freefreq

PROPERTIES freefreq:NAT1

VARIABLES creditr, playlist, free

INVARIANT

creditr:NAT & creditr = credit &

playlist:iseq(TRACK) & ran (playlist) = playset &

free:0..freefreq

INITIALISATION

creditr:=0 ; playlist:= [] ; free:=0

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 47 / 50

Refinement

Example: Jukebox / Operations (excerpt)

select (tt) =

BEGIN

IF tt/:ran (playlist) THEN playlist := playlist <- tt END ;

IF free = freefreq

THEN CHOICE free := 0 OR creditr := creditr-1 END

ELSE free := free+1 ; creditr := creditr-1

END

END

;

tt <-- play =

PRE playlist /= []

BEGIN tt := first (playlist) ;

playlist := tail (playlist)

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 48 / 50

Refinement

Proof Obligation for Refinement

I INVARIANT of the REFINEMENT specifies the linking invariant
between state spaces of original and refinement

I Let INVARIANT I in original and INVARIANT IR in refinement

I For INITIALISATION T in original and INITIALISATION TR in the
refinement, it must hold that

[TR] (not [T] (not IR))

I For operation PRE P THEN S END in original and PRE PR THEN SR

END in refinement, it must hold that

I & IR & P => [SR] (not [S] (not IR))

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 49 / 50

Refinement

Proof Obligation for Refinement

I INVARIANT of the REFINEMENT specifies the linking invariant
between state spaces of original and refinement

I Let INVARIANT I in original and INVARIANT IR in refinement

I For INITIALISATION T in original and INITIALISATION TR in the
refinement, it must hold that

[TR] (not [T] (not IR))

I For operation PRE P THEN S END in original and PRE PR THEN SR

END in refinement, it must hold that

I & IR & P => [SR] (not [S] (not IR))

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 49 / 50

Refinement

Summary

I B — an industrial strength formal method that supports all phases of
software development

I Approach:
I start with high-level spec
I apply refinement steps until level of implementation reached
I (code generation tools exist)

I Each refinement step results in proof obligations that must be
discharged

I Omitted from lecture
I structuring: machine parameters, inclusion, extension, state and type

export
I implementation machines, loops, library machines
I more notation . . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 50 / 50

	Abstract Machines
	Sets and Logic
	Weakest Preconditions
	Machine Consistency
	Relations
	Functions
	Nondeterminism
	Refinement

