
Software Engineering
Lecture 07: Physical Design — Components and Middleware

Peter Thiemann

University of Freiburg, Germany

SS 2013

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 31

Distributed Applications

Basic choices
I Architecture

I Client/Server architecture
I Web-Architecture

I Middleware
I Communication between program components
I Requirements

I Language independence
I Platform independence
I Location independence

I Security

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 31

Client/Server Architecture

ServerClient

I/O layer dialogue

layer

logical

data access

physical

data accessgeneral

applicationapplication
specific

thin client fat client

I Application divided in client-part and server-part

I → Five possible divisions of standard (six) layer architecture
(thin client → fat client)

I Characteristics fixed in the requirements
(# of users, operating systems, database systems, . . .)

advantages: traceability of user session, special protocols, design
influenced by # users

disadvantages: scalability, distribution of client software, portability

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 31

Web Architecture

I Client: only I/O layer; Server: everything else

I Client requirements: Web browser (user interface)

I Server requirements:

I Web server (distribution of documents, communication with
application)

I Application server (application-specific and application-general objects)
I Database server (persistent data)

advantages: scalability (very high number of users, in particular with replicated
servers), maintainability (standard components), no software
distribution required

disadvantages: restriction to HTTP, stateless and connectionless protocol requires
implementation of session management, different Web browsers need to
be supported (Internet Programming)

Current technology addresses some of the disadvantages: Servlets, ASP, . . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 31

Refinement: N-tier Architecture

I Physical deployment follows the logical division into layers (tiers)

I Why?

I Separation of concerns (avoids e.g. mixing of presentation logic and
business logic)

I Scalability
I Standardized frameworks (e.g., Java Platform, Enterprise Edition, Java

EE 6) handle issues like security and multithreading automatically

I Example (Java EE):

I Presentation: Web browser
I Presentation logic: Web Tier (JSP/servlets, JavaServer Faces,

JavaBeans)
I Business logic: Business Tier (Enterprise JavaBeans, Web Services)
I Data access: Enterprise Information System Tier (Java Persistence

API, JDBC, Java Transaction API)
I Backend integration (legacy systems, DBMS, distributed objects)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 31

Enterprise JavaBeans (EJB): Goals

I Part of Java Platform, Enterprise Edition (Java EE 6)

I A SPECIFICATION! but implementations are available

I Server-side component architecture for enterprise applications in Java 1

I Defines interaction of components with their container 2

I Development, deployment, and use of web services

I Abstraction from low-level APIs

I Deployment on multiple platforms without recompilation

I Interoperability

I Components developed by different vendors

I Compatible with other Java APIs

1→ main target: business logic, between UI and DBMS
2directory services, transaction management, security, resource pooling, fault

tolerance
Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 31

EJB Component Types

Session Beans

I Interfaces to server-side operations

I Typically business methods
I Three kinds

I Stateless Session Bean: no state carried over between method
invocations; one Bean instance can be shared between multiple clients

I Stateful Session Bean: maintains state between method invocations;
one Bean instance per client

I Singleton Bean: one instance for all

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 31

EJB Component Types /2

Message-Driven Beans

I Event Listeners

I Asynchronous Messaging

Entity Bean

I Object View of RDBMS; object-relational mapping

I Persistence defined separately with JPA (Java Persistence API)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 31

EJB Component Types /3

I All components implemented as POJOs (plain old Java objects)

I No subclassing or implementing of particular interfaces required

I Special roles imposed by annotations

All invocations through interfaces

I Local interface: for method invocations inside the same VM

I Remote interface: for method invocations with unknown location
(less efficient)

I Implementing one bean means implementing several interfaces and
classes consistently

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 31

EJB Example: Remote Interface
A plain Java interface

public interface CalculatorCommonBusiness {

/**

* Adds all arguments

* @return The sum of all arguments */

int add(int... arguments);

}

public interface CalculatorRemoteBusiness

extends CalculatorCommonBusiness{}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 31

EJB Example: Bean Implementation Class
A plain Java class

public class CalculatorBeanBase implements CalculatorCommonBusiness {

/**

* {@link CalculatorCommonBusiness#add(int...)}

*/

@Override

public int add(final int... arguments) {

// Initialize

int result = 0;

// Add all arguments

for (final int arg : arguments) {

result += arg;

}

// Return

return result;

}

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 31

EJB Example: Bean Class
A plain Java class with annotations

import javax.ejb.LocalBean;

import javax.ejb.Stateless;

@Stateless (name = CalculatorEJB)

@Local (CalculatorRemoteBusiness.class)

public class SimpleCalculatorBean extends CalculatorBeanBase {

/*

* Implementation supplied by common base class

*/

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 31

Lower Level Services

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 31

Lower Level Services

Connection of resources in Client/Server architecture

1. Sockets (TCP/IP, . . .)

2. RPC

3. RMI

4. SOAP (Simple Object Access Protocol)/Web Services

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 31

Sockets

I Software terminal of a network connection (a data structure)
I Two modes of communication to host

I Reliable, bidirectional communication stream or
I Unreliable, unidirectional one-shot message

I Local variant: inter-process communication (IPC)
I Low level:

I Manipulation of octet-streams required
I Custom protocols

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 31

Sockets in Java
Server: Read two numbers and output their sum

ServerSocket serverSocket = new ServerSocket(1234);

while (true) {

Socket client = serverSocket.accept();

InputStream input = client.getInputStream();

OutputStream output = client.getOutputStream();

int value1 = input.read();

int value2 = input.read();

output.write(value1 + value2);

input.close();

output.close();

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 31

Sockets in Java
Client: Send two numbers and obtain their sum

Socket server = new Socket("localhost", 1234);

InputStream input = server.getInputStream();

OutputStream output = server.getOutputStream();

output.write(1);

output.write(2);

int result = input.read();

input.close();

output.close();

Aside

I How do we ensure that client and server fit together?

I We’ll consider an approach later on. . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 31

Sockets in Java
Client: Send two numbers and obtain their sum

Socket server = new Socket("localhost", 1234);

InputStream input = server.getInputStream();

OutputStream output = server.getOutputStream();

output.write(1);

output.write(2);

int result = input.read();

input.close();

output.close();

Aside

I How do we ensure that client and server fit together?

I We’ll consider an approach later on. . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 31

Remote Procedure Call (RPC)

I Procedure call across process and system boundaries (heterogeneous)

I Transparent to client code, but some specialities

I Error handling: failures of the remote server or network
I No global variables or side-effects
I Performance: RPC usually one or more orders of magnitude slower
I Authentication: may be necessary for RPC

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 31

Anatomy of RPC

I Define interface in terms of XDR (eXternal Data Representation)

I XDR is a data representation format
I XDR is independent of a particular host language and host architecture

(network format)

I Marshalling: data conversion from internal representation (host
language data) to standardized external representation
Synonyms: Serialization, pickling

I Stub functions for each remotely callable procedure
client code is written in terms of calls to client stubs
server code is called from server stubs

I Stub functions generated by RPC compiler from interface definition

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 31

Timeline of an RPC

time client stub server stub

↓ marshall parameters to XDR
connect to server → invoked by incoming connection
transmit parameters → receive parameters
wait for server response unmarshall parameters

call actual implementation
marshall results

receive results ← transmit results
unmarshall results from XDR exit

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 31

Remote Method Invocation (RMI)

I Object-oriented RPC

I Specific to Java
I Implements method calls

I Dynamic dispatch
I Access to object identity (this)

I Object serialization (marshalling)

I Access via interfaces

I Easy to use

I Latest variant: asynchronous method invocation

I “Experience has shown that the use of RMI can require significant
programmer effort and the writing of extra source code”
Douglas Lyon: “Asynchronous RMI for CentiJ”, in Journal of Object Technology, vol. 3, no. 3, March-April 2004, pp.
49-64. http://www.jot.fm/issues/issue_2004_03/column5

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 31

http://www.jot.fm/issues/issue_2004_03/column5

Simple Object Access Protocol (SOAP)

I Transport protocol specification for method invocations

I Based on HTTP plus extensions3

I Encodes information using XML / XML Schema4

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

3reason: internet security, firewalls
4reason: standard, extensibility, can be validated

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 31

Web Services and WSDL

I Web Service Description Language

I XML-based

I Describes location and protocol of the service

I Main elements:

portType Operations of service (cf. RPC program)
message Spezification of parameters

types Data types (XML Schema)
binding Message format and protocol

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 31

WSDL 2.0 Example (excerpt)

<types>

<xs:element name="getTermRequest" type="xs:string">

</xs:element>

<xs:element name="getTermResponse" type="xs:string">

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="getTerm">

<input messageLabel="In" element="tns:getTermRequest"/>

<output messageLabel="Out" element="tns:getTermResponse"/>

</operation>

</interface

I xs is the namespace for XML Schema definitions
xmlns:xs="http://www.w3.org/2001/XMLSchema"

I tns is the targetnamespace for the type definitions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 31

xmlns:xs = "http://www.w3.org/2001/XMLSchema"

WSDL Example: One-Way Operation

<types>

<xs:element name="newTermValues">

<xs:attribute name="term" type="xs:string" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="setGlossaryTerm">

<input messageLabel="In" element="tns:newTermValues"/>

</operation>

</interface>

I No return value ⇒ no answer message

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 31

Further Kinds of Operation

I output-only (no <input> params), Example:

<types>

<xs:element name="whatTimeValue"/>

<xs:element name="theTimeValue" type="xs:date"/>

</types>

<interface name="Date">

<operation name="currentTime">

<input messageLabel="In" element="tns:whatTimeValue"/>

<output messageLabel="Out" element="tns:theTimeValue"/>

</operation>

</interface>

I “Notification”: output with empty request

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 31

Automatic generation of WSDL code

I Translation from WDSL to a client API is tedious

I Parsing XML

I Verifying XML Schema

I Choice of data types

I Binding to HTTP and SOAP possible

⇒ Tools: WSDL2Java

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 31

Glimpse on Two Further Component Models

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 31

Distributed Component Object Model (DCOM)

I Proprietary format for communication between objects

I Binary standard (not language specific) for “components”

I COM object implements one or more interfaces

I Described by IDL (Interface Definition Language);
stubs etc. directly generated by tools

I Immutable and persistent
I May be queried dynamically

I COM services

I Uniform data transfer IDataObject
(clipboards, drag-n-drop, files, streams, etc)

I Dispatch interfaces IDispatch combine all methods of a regular
interface into one method (RTTI)

I Outgoing interfaces (required interfaces, female connector)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 31

Common Object Request Broker Architecture (CORBA)

I Open distributed object computing infrastructure

I Specified by OMG (Object Management Group)
I Manages common network programming tasks

I Cross-Language: Normalizes the method-call semantics
I Parameter marshalling and demarshalling
I Object registration, location, and activation
I Request demultiplexing
I Framing and error-handling

I Extra services
Component model reminiscent of EJB

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 31

Summary

I Distributed Systems Architecture
I client/server
I web
I n-tier (Java EE 6)

I Middleware building blocks

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 31

