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Model Driven Engineering

Model Driven Engineering

Material

I Thomas Stahl, Markus Völter. Model-Driven Software Development.
Wiley & Sons. 2006.

I Anneke Kleppe, Jos Warmer. MDA Explained: The Model Driven
Architecture: Practice and Promise. Pearson. 2003.

I Stephen J. Mellor, Axel Uhl, Kendall Scott, Dirk Weise. MDA
Distilled: Solving the Integration Problem with the Model Driven
Architecture. Pearson. 2004.
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Model Driven Engineering

What is MDA?

I MDA = Model Driven Architecture
I also: MD (Software/Application) Development, Model Based

[Development/Management/Programming]
I Model Driven Engineering, Model Integrated Computing

I Initiative of the OMG (trade mark)
I OMG = Object Management Group: CORBA, UML, . . .
I open consortium of companies (ca. 800 Firmen)

I Goal: Improvement of software development process
I Approach: Shift development process from code-centric to

model-centric
I Reuse of models
I Transformation of models
I Code generation from models
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Model Driven Engineering Goals of MDA

Goals of MDA
Software Development at High Level of Abstraction

Portability and Reusability

I Development abstracts from target platform

I Technology mapping in reusable transformations

I New technology ⇒ new transformation

Productivity

Each phase contributes to the product, not just the implementation

Documentation and Maintenance

I Changes through changes of the models

I Models are documentation ⇒ consistency
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Model Driven Engineering Models

Models in MDA

Platform

I Hardware, Virtual machine, API, . . .

I Examples: Operating system, JVM, EJB

Platform Independent Model (PIM) vs Platform Specific Model
(PSM)

I Relative concepts, several levels of models possible

I Inverse transformation PSM ⇒ PIM unlikely

Transformation

I Formally defined mappings between models

I Code is the ultimate model (PSM)

I Model-to-code is a special case
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Model Driven Engineering Models

Models in MDA/2

CORBA−
Modell

J2EE−
Modell

XML−
Modell

CORBA/C++−
Code

J2EE/Java−
Code

XML−
Code

Spezifikation
Fachliche PIM (Platform Independent Model)

Model−to−model transformation

PSM (Platform Specific Model)

Model−to−code transformation

Implementation
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Model Driven Engineering Models

Models and Transformations

PIM

PSM
(Components)

PSM
(EJB 2.0)

PSM
(WLS 8.2)

Code
(Java / XML)
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Metamodeling

Metamodeling
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Metamodeling

Metamodeling
Intro

I What?
I meta = above
I Define an ontology of concepts for a domain.
I Define the vocabulary and grammatical rules of a modeling language.
I Define a domain specific language (DSL).

I Why?
I Concise means of specifying the set models for a domain.
I Precise definition of modeling language.

I How?
I Grammars and attributions for text-based languages.
I Metamodeling generalizes to arbitrary languages (e.g., graphical)
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Metamodeling

Metamodeling
Uses

I Construction of DSLs

I Validation of Models
(checking against metamodel)

I Model-to-model transformation
(defined in terms of the metamodels)

I Model-to-code transformation

I Tool integration

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 42



Metamodeling Excursion: Classifiers and Instances

Excursion: Classifiers and Instances

I UML Classifier: class, interface, component, use case

I Instance: entity described by classifier
I Instance description may include

I name (optional)
I classification by zero or more classifiers
I kind of instance

I instance of class: object
I instance of association: link
I etc

I optional specification of values
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Metamodeling Excursion: Classifiers and Instances

Excursion: Notation for Instances

I Box to indicate the instance

I Name compartment contains
name:classifier,classifier . . .
name:classifier

:classifier anonymous instance
: unclassified, anonymous instance

I Attribute in the classifier may give rise to like-named slot with
optional value

I Association with the classifier may give rise to link to other
association end
direction must coincide with navigability

Attention
Instance notation is similar to classifier notation.
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Metamodeling Excursion: Classifiers and Instances

Excursion: Notation for Instances (Graphical)

name : String
gross weight : Integer
country : String

QE2 : Ship

Ship

<<instance of>>

name = "QE2"
gross weight = 70327 
country = "GB"

Sailor

name : String
rank : String

name = "N. Bates"
rank = "Captain"

captainBates : Sailor

<<instance of>><<instance of>>

top: classes; bottom: instances
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Metamodeling Terminology

Terminology/Syntax

Syntax: well-formedness rules for phrases / sentences

I abstract syntax
typically a tree or graph structure, how are the language concepts
composed

I concrete syntax
defines specific notation (character string or picture)

I typical use:
parser maps concrete syntax to abstract syntax
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Metamodeling Terminology

Terminology/Abstract Syntax
Example: Traditional abstract syntax; arithmetic expressions

I Abstract syntax (in F# notation)

type Expr = Const of string

| Var of string

| Binop of Op * Expr * Expr

type Op = Add | Sub | Mul | Div

val aTree = Binop (Mul, Const "2",

Binop (Add, Var "x", Const "3"))

I Concrete syntax (context-free grammar)

E ::= c | x | E B E | (E )
B ::= + | − | ∗ | /

2 * (x + 3)
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Metamodeling Terminology

Terminology/Abstract Syntax
Example: UML class diagram

I Concrete syntax

Person

name

raise()
salary

I Abstract syntax (instance of the metamodel)

name = "Person"

:Class

name = "name"

:Attribute

name = "raise"

:Operation

name = "salary"

:Attribute
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Metamodeling Terminology

Terminology/Static Semantics

I Static semantics defines well-formedness rules beyond the syntax
I Examples

I “Variables have to be defined before use”
I Type system of a programming language

"hello" * 4 is syntactically correct Java, but rejected

I UML: static semantics via OCL expressions

I Use: detection of modeling/transformation errors
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Metamodeling Terminology

Terminology/Domain Specific Language (DSL)

I Purpose: formal expression of key aspects of a domain

I Metamodel of DSL defines abstract syntax and static semantics
I Additionally:

I concrete syntax (close to domain)
I dynamic semantics

I for understanding
I for automatic tools

I Different degrees of complexity possible
configuration options with validity check
graphical DSL with domain specific editor
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Metamodeling Model and Metamodel

Model and Metamodel
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Metamodeling Model and Metamodel

Model and Metamodel

Model Metamodel

metamodel"real world"
elements

model elements

Domain of discourse

elements
describesdescribes

I Insight: Every model is an instance of a metamodel.

I Essential: instance-of relationship
I Every element must have a classifying metaelement which

I contains the metadata and
I is accessible from the element

I Relation Model:Metamodel is like Object:Class

I Definition of Metamodel by Meta-metamodel

I ⇒ infinite tower of metamodels

I ⇒ “meta” relation always relative to a model
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Metamodeling Model and Metamodel

Metamodeling a la OMG

I OMG defines a standard (MOF) for metamodeling

I MOF (Meta Object Facilities) used for defining UML
I Confusion alert:

I MOF and UML share syntax (classifier and instance diagrams)
I MOF shares names of modeling elements with UML (e.g., Class)

I Approach taken in MOF
I Restrict infinite number of metalevels to four
I Last level is deemed “self-describing”
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Metamodeling OMG’s Four Metalevels

OMG’s Four Metalevels

M2: Metamodel

Typ: Classifier

ID: 764535
Name: Klasse

Features: Attributes, Operations, Assoc’s, ...

M0: Instances Typ: Person
ID: 05034503

Name: Doe
Given name: John

describes instanceof

M1: Model

Typ: Klasse
ID: 21436456

Name: Person
Attribute: Name, Firstn.
Operations: ...
Association: ...

describes instanceof

describes instanceof

M3: Meta−Metamodel

Typ: Classifier

ID: 5346456

Name: Classifier

describes instanceof
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Metamodeling OMG’s Four Metalevels

Layer M0: Instances

I Level of the running system

I Contains actual objects, e.g., customers, seminars, bank accounts,
with filled slots for attributes etc

I Example: object diagram
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Metamodeling OMG’s Four Metalevels

Layer M1: Model

I Level of system models
I Example:

I UML model of a software system
I Class diagram contains modeling elements: classes, attributes,

operations, associations, generalizations, . . .

I Elements of M1 categorize elements at layer M0

I Each element of M0 is an instance of M1 element

I No other instances are allowed at layer M0
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Metamodeling OMG’s Four Metalevels

Relation between M0 and M1

:Customer 

title = "Dr"

name = "Joe Nobody"

:Customer

title = "Mr"

name = "Mark Everyman"

M0: System

:Order

number = "200604"

name = "somename"

Order

name      : String

number  : String

M1: Model of a System

name : String

     Customer

<<instance of>> <<instance of>><<instance of>>

title    : String
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Metamodeling OMG’s Four Metalevels

Layer M2: Metamodel
“Model of Model”

I Level of modeling element definition

I Concepts of M2 categorize instances at layer M1

I Elements of M2 model categorize M1 elements: classes, attributes,
operations, associations, generalizations, . . .

I Examples
I Each class in M1 is an instance of some class-describing element in

layer M2 (in this case, a Metaclass)
I Each association in M1 is an instance of some association-describing

element in layer M2 (a Metaassociation)
I and so on
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Metamodeling OMG’s Four Metalevels

Relation between M1 and M2

UML AttributeUML AttributeUML Class

name: Stringname: String

M2: Model of a Model

name = "number"

:UML Class:UML Class :UML Attribute

name = "Order"name = "Customer"

M1: Model

<<instance of>> <<instance of>> <<instance of>>
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Metamodeling OMG’s Four Metalevels

Layer M3: Meta-Metamodel

I Level for defining the definition of modeling elements

I Elements of M3 model categorize M2 elements: Metaclass,
Metaassociation, Metaattribute, etc

I Typical element of M3 model: MOF class
I Examples

I The metaclasses Class, Association, Attribute, etc are all instances of
MOF class

I M3 layer is self-describing
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Metamodeling OMG’s Four Metalevels

Relation between M2 and M3

:MOF Class :MOF Class

name = "UML Attribute"name = "UML Class"

M2: Model of a Model

name: String

MOF Class M3: Model of a Model of a Model

<<instance of>><<instance of>>
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Metamodeling OMG’s Four Metalevels

Overview of Layers

UML AttributeUML Class

name: String name: String

M2: Model of a Model

name: String
MOF Class M3: Model of a Model of a Model

Customer Customer Order

title = "Dr"
name = "Joe Nobody"

title = "Mr" number = "200604"
name = "somename"name= "M. Everyman"

M0: System

Customer Order

name: String name: String
number: Stringtitle: String

M1: Model of a System

<<instance of>> <<instance of>>

<<instance of>> <<instance of>> <<instance of>> <<instance of>>

<<instance of>> <<instance of>>
<<instance of>>
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Metamodeling OMG’s Four Metalevels

Excerpt from MOF/UML

can throw

Model
Element

Import Namespace Constraint Tag Feature

Behavioral
Feature

Generalizable
Element

Package

generalizes

Classifier Operation Exception

ClassAssociation
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Metamodeling Applications

Applications of Metamodeling
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Metamodeling Applications Feature Modeling

Applications of Metamodeling
Feature Modeling

I Feature models are a tool for domain analysis
I Provide a hierarchical view of features and their dependencies
I Establish an ontology for categorization

I Visualized by feature diagrams

I Conceived for software domain analysis: Kang, Cohen, Hess, Novak,
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report CMU/SEI-90-TR-21. 1990.

I Popularized for Generative Programming by Czarnecki and Eisenäcker

I Also for analyzing other domains
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Metamodeling Applications Feature Modeling

Feature Modeling
Example

Vehicle

EngineBody Gearbox Hitch

manual electrical Combustionautomatic

I Hierarchical, but not is-a relation (as in a class diagram)

I Features may be qualified as
required, optional, alternative, or n-of-m (selection)
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Metamodeling Applications Feature Modeling

Feature Modeling
MOF-based Metamodel

<<instanceof>> <<instanceof>>
<<instanceof>>

FM::SubfeatureGroup

1

FM::GroupKind

inv:value=="required"||value=="optional"||

inv:type=="String"

MOF::Class
attributes MOF::Attribute

type:String

value:String

kind
11 FM::GroupKind

value=="alternative"||value=="nOfM"
inv:parent==null

FM::Concept
FM::Concept

FM::Feature

features

n

n

groups

parent

1

MOF

Feature
Modelling
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Metamodeling Applications Feature Modeling

Feature Modeling
Feature Model in Abstract Syntax

additionalFeatureSFG

FM::SubfeatureGroup

kind="optional"

AdditionalFeature

FM::Feature

name="AdditionalFeatures"

addFeatureTwoSFG

FM::SubfeatureGroup

kind="nOfM"

stackFeature:

FM::Concept

optimizationDFG

FM::SubfeatureGroup

name="Optimization"kind="optional"

optimizationKindSFGoptimizationFeature

FM::SubfeatureGroupFM::Feature

kind="alternative"

threadFeature

FM::Feature

name="ThreadSafety"

boundsFeature

FM::Feature

name="BoundsCheck"

typeFeature

FM::Feature

name="TypeCheck

speedFeature

FM::Feature

name="Speed"

memoryFeature

FM::Feature

name="MemoryUsage"

Additional

Memory

Optimization
Features

Speed
Usage Safety

Thread
Check
Bounds

Check
Type

Stack
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Metamodeling Applications Feature Modeling

Feature Modeling
Extended Metamodel and Concrete Syntax

FM::Feature

open:boolean

optimizationFeature

FM::Feature

name="Optimization"

open=true [open]

Optimization

Metamodel Object diagram Feature diagram

New feature ⇒
I new attribute in metamodel

I new slot in model

I extension of concrete syntax
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Metamodeling Applications Component Modeling

Applications of Metamodeling
Component Modeling

I Domain specific modeling language for small and embedded systems

I Main abstraction: component
I A component may

I provide services via interfaces
I require services via interfaces
I have configuration parameters
I be an application (does not provide services)
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Metamodeling Applications Component Modeling

Component Modeling
Example

SMSIF CallIF EMSIF

UIManager

MenuUtilities

TextEditor

SMSIF

<<application>>

SMSApp

GSMStack

lookAndFeel:String
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Metamodeling Applications Component Modeling

Component Modeling
Simple Component Metamodel

Application

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application

inv: to.Interface = from.Interface

context PortDependency

{subsets
Attributes}

ConfigParam
*

1 *

ports

* 1

tofrom

Port

Dependency

ProvidedPortRequiredPort

Port InterfaceComponent
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Metamodeling Applications Component Modeling

Component Modeling
MOF-based Simple Component Metamodel

Port
Dependency inv: to.Interface = from.Interface

context PortDependency

UML::

Attribute
UML::

Interface

*

{subsets Features}

Attributes

UML::Class
name: String

type: String

Port

Application

ConfigParam
*

Component
1 * * 1

ports

Attributes}
{subsets

RequiredPort ProvidedPort

Interface

tofrom
context ConfigParam

inv: type = "String"

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application
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Summary

Summary

I Model Driven Engineering requires customized models on many levels

I Metamodeling required for defining custom models

I MOF is OMG sanctioned toolbox for metamodeling

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 42 / 42


	Model Driven Engineering
	Goals of MDA
	Models

	Metamodeling
	Excursion: Classifiers and Instances
	Terminology
	Model and Metamodel
	OMG's Four Metalevels

	Metamodeling Applications
	Feature Modeling
	Component Modeling

	Summary

