
Software Engineering
Lecture 08: Model Driven Engineering and Metamodeling

Peter Thiemann

University of Freiburg, Germany

SS 2013

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 42

Model Driven Engineering

Model Driven Engineering

Material

I Thomas Stahl, Markus Völter. Model-Driven Software Development.
Wiley & Sons. 2006.

I Anneke Kleppe, Jos Warmer. MDA Explained: The Model Driven
Architecture: Practice and Promise. Pearson. 2003.

I Stephen J. Mellor, Axel Uhl, Kendall Scott, Dirk Weise. MDA
Distilled: Solving the Integration Problem with the Model Driven
Architecture. Pearson. 2004.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 42

Model Driven Engineering

What is MDA?

I MDA = Model Driven Architecture
I also: MD (Software/Application) Development, Model Based

[Development/Management/Programming]
I Model Driven Engineering, Model Integrated Computing

I Initiative of the OMG (trade mark)
I OMG = Object Management Group: CORBA, UML, . . .
I open consortium of companies (ca. 800 Firmen)

I Goal: Improvement of software development process
I Approach: Shift development process from code-centric to

model-centric
I Reuse of models
I Transformation of models
I Code generation from models

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 42

Model Driven Engineering Goals of MDA

Goals of MDA
Software Development at High Level of Abstraction

Portability and Reusability

I Development abstracts from target platform

I Technology mapping in reusable transformations

I New technology ⇒ new transformation

Productivity

Each phase contributes to the product, not just the implementation

Documentation and Maintenance

I Changes through changes of the models

I Models are documentation ⇒ consistency

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 42

Model Driven Engineering Models

Models in MDA

Platform

I Hardware, Virtual machine, API, . . .

I Examples: Operating system, JVM, EJB

Platform Independent Model (PIM) vs Platform Specific Model
(PSM)

I Relative concepts, several levels of models possible

I Inverse transformation PSM ⇒ PIM unlikely

Transformation

I Formally defined mappings between models

I Code is the ultimate model (PSM)

I Model-to-code is a special case

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 42

Model Driven Engineering Models

Models in MDA/2

CORBA−
Modell

J2EE−
Modell

XML−
Modell

CORBA/C++−
Code

J2EE/Java−
Code

XML−
Code

Spezifikation
Fachliche PIM (Platform Independent Model)

Model−to−model transformation

PSM (Platform Specific Model)

Model−to−code transformation

Implementation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 42

Model Driven Engineering Models

Models and Transformations

PIM

PSM
(Components)

PSM
(EJB 2.0)

PSM
(WLS 8.2)

Code
(Java / XML)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 42

Metamodeling

Metamodeling

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 42

Metamodeling

Metamodeling
Intro

I What?
I meta = above
I Define an ontology of concepts for a domain.
I Define the vocabulary and grammatical rules of a modeling language.
I Define a domain specific language (DSL).

I Why?
I Concise means of specifying the set models for a domain.
I Precise definition of modeling language.

I How?
I Grammars and attributions for text-based languages.
I Metamodeling generalizes to arbitrary languages (e.g., graphical)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 42

Metamodeling

Metamodeling
Uses

I Construction of DSLs

I Validation of Models
(checking against metamodel)

I Model-to-model transformation
(defined in terms of the metamodels)

I Model-to-code transformation

I Tool integration

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 42

Metamodeling Excursion: Classifiers and Instances

Excursion: Classifiers and Instances

I UML Classifier: class, interface, component, use case

I Instance: entity described by classifier
I Instance description may include

I name (optional)
I classification by zero or more classifiers
I kind of instance

I instance of class: object
I instance of association: link
I etc

I optional specification of values

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 42

Metamodeling Excursion: Classifiers and Instances

Excursion: Notation for Instances

I Box to indicate the instance

I Name compartment contains
name:classifier,classifier . . .
name:classifier

:classifier anonymous instance
: unclassified, anonymous instance

I Attribute in the classifier may give rise to like-named slot with
optional value

I Association with the classifier may give rise to link to other
association end
direction must coincide with navigability

Attention
Instance notation is similar to classifier notation.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 42

Metamodeling Excursion: Classifiers and Instances

Excursion: Notation for Instances

I Box to indicate the instance

I Name compartment contains
name:classifier,classifier . . .
name:classifier

:classifier anonymous instance
: unclassified, anonymous instance

I Attribute in the classifier may give rise to like-named slot with
optional value

I Association with the classifier may give rise to link to other
association end
direction must coincide with navigability

Attention
Instance notation is similar to classifier notation.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 42

Metamodeling Excursion: Classifiers and Instances

Excursion: Notation for Instances (Graphical)

name : String
gross weight : Integer
country : String

QE2 : Ship

Ship

<<instance of>>

name = "QE2"
gross weight = 70327
country = "GB"

Sailor

name : String
rank : String

name = "N. Bates"
rank = "Captain"

captainBates : Sailor

<<instance of>><<instance of>>

top: classes; bottom: instances

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 42

Metamodeling Terminology

Terminology/Syntax

Syntax: well-formedness rules for phrases / sentences

I abstract syntax
typically a tree or graph structure, how are the language concepts
composed

I concrete syntax
defines specific notation (character string or picture)

I typical use:
parser maps concrete syntax to abstract syntax

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 42

Metamodeling Terminology

Terminology/Abstract Syntax
Example: Traditional abstract syntax; arithmetic expressions

I Abstract syntax (in F# notation)

type Expr = Const of string

| Var of string

| Binop of Op * Expr * Expr

type Op = Add | Sub | Mul | Div

val aTree = Binop (Mul, Const "2",

Binop (Add, Var "x", Const "3"))

I Concrete syntax (context-free grammar)

E ::= c | x | E B E | (E)
B ::= + | − | ∗ | /

2 * (x + 3)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 42

Metamodeling Terminology

Terminology/Abstract Syntax
Example: UML class diagram

I Concrete syntax

Person

name

raise()
salary

I Abstract syntax (instance of the metamodel)

name = "Person"

:Class

name = "name"

:Attribute

name = "raise"

:Operation

name = "salary"

:Attribute

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 42

Metamodeling Terminology

Terminology/Static Semantics

I Static semantics defines well-formedness rules beyond the syntax
I Examples

I “Variables have to be defined before use”
I Type system of a programming language

"hello" * 4 is syntactically correct Java, but rejected

I UML: static semantics via OCL expressions

I Use: detection of modeling/transformation errors

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 42

Metamodeling Terminology

Terminology/Domain Specific Language (DSL)

I Purpose: formal expression of key aspects of a domain

I Metamodel of DSL defines abstract syntax and static semantics
I Additionally:

I concrete syntax (close to domain)
I dynamic semantics

I for understanding
I for automatic tools

I Different degrees of complexity possible
configuration options with validity check
graphical DSL with domain specific editor

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 42

Metamodeling Model and Metamodel

Model and Metamodel

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 42

Metamodeling Model and Metamodel

Model and Metamodel

Model Metamodel

metamodel"real world"
elements

model elements

Domain of discourse

elements
describesdescribes

I Insight: Every model is an instance of a metamodel.

I Essential: instance-of relationship
I Every element must have a classifying metaelement which

I contains the metadata and
I is accessible from the element

I Relation Model:Metamodel is like Object:Class

I Definition of Metamodel by Meta-metamodel

I ⇒ infinite tower of metamodels

I ⇒ “meta” relation always relative to a model

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 42

Metamodeling Model and Metamodel

Metamodeling a la OMG

I OMG defines a standard (MOF) for metamodeling

I MOF (Meta Object Facilities) used for defining UML
I Confusion alert:

I MOF and UML share syntax (classifier and instance diagrams)
I MOF shares names of modeling elements with UML (e.g., Class)

I Approach taken in MOF
I Restrict infinite number of metalevels to four
I Last level is deemed “self-describing”

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 42

Metamodeling OMG’s Four Metalevels

OMG’s Four Metalevels

M2: Metamodel

Typ: Classifier

ID: 764535
Name: Klasse

Features: Attributes, Operations, Assoc’s, ...

M0: Instances Typ: Person
ID: 05034503

Name: Doe
Given name: John

describes instanceof

M1: Model

Typ: Klasse
ID: 21436456

Name: Person
Attribute: Name, Firstn.
Operations: ...
Association: ...

describes instanceof

describes instanceof

M3: Meta−Metamodel

Typ: Classifier

ID: 5346456

Name: Classifier

describes instanceof

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 42

Metamodeling OMG’s Four Metalevels

Layer M0: Instances

I Level of the running system

I Contains actual objects, e.g., customers, seminars, bank accounts,
with filled slots for attributes etc

I Example: object diagram

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 42

Metamodeling OMG’s Four Metalevels

Layer M1: Model

I Level of system models
I Example:

I UML model of a software system
I Class diagram contains modeling elements: classes, attributes,

operations, associations, generalizations, . . .

I Elements of M1 categorize elements at layer M0

I Each element of M0 is an instance of M1 element

I No other instances are allowed at layer M0

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 42

Metamodeling OMG’s Four Metalevels

Relation between M0 and M1

:Customer

title = "Dr"

name = "Joe Nobody"

:Customer

title = "Mr"

name = "Mark Everyman"

M0: System

:Order

number = "200604"

name = "somename"

Order

name : String

number : String

M1: Model of a System

name : String

 Customer

<<instance of>> <<instance of>><<instance of>>

title : String

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 42

Metamodeling OMG’s Four Metalevels

Layer M2: Metamodel
“Model of Model”

I Level of modeling element definition

I Concepts of M2 categorize instances at layer M1

I Elements of M2 model categorize M1 elements: classes, attributes,
operations, associations, generalizations, . . .

I Examples
I Each class in M1 is an instance of some class-describing element in

layer M2 (in this case, a Metaclass)
I Each association in M1 is an instance of some association-describing

element in layer M2 (a Metaassociation)
I and so on

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 42

Metamodeling OMG’s Four Metalevels

Relation between M1 and M2

UML AttributeUML AttributeUML Class

name: Stringname: String

M2: Model of a Model

name = "number"

:UML Class:UML Class :UML Attribute

name = "Order"name = "Customer"

M1: Model

<<instance of>> <<instance of>> <<instance of>>

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 42

Metamodeling OMG’s Four Metalevels

Layer M3: Meta-Metamodel

I Level for defining the definition of modeling elements

I Elements of M3 model categorize M2 elements: Metaclass,
Metaassociation, Metaattribute, etc

I Typical element of M3 model: MOF class
I Examples

I The metaclasses Class, Association, Attribute, etc are all instances of
MOF class

I M3 layer is self-describing

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 42

Metamodeling OMG’s Four Metalevels

Relation between M2 and M3

:MOF Class :MOF Class

name = "UML Attribute"name = "UML Class"

M2: Model of a Model

name: String

MOF Class M3: Model of a Model of a Model

<<instance of>><<instance of>>

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 42

Metamodeling OMG’s Four Metalevels

Overview of Layers

UML AttributeUML Class

name: String name: String

M2: Model of a Model

name: String
MOF Class M3: Model of a Model of a Model

Customer Customer Order

title = "Dr"
name = "Joe Nobody"

title = "Mr" number = "200604"
name = "somename"name= "M. Everyman"

M0: System

Customer Order

name: String name: String
number: Stringtitle: String

M1: Model of a System

<<instance of>> <<instance of>>

<<instance of>> <<instance of>> <<instance of>> <<instance of>>

<<instance of>> <<instance of>>
<<instance of>>

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 42

Metamodeling OMG’s Four Metalevels

Excerpt from MOF/UML

can throw

Model
Element

Import Namespace Constraint Tag Feature

Behavioral
Feature

Generalizable
Element

Package

generalizes

Classifier Operation Exception

ClassAssociation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 42

Metamodeling Applications

Applications of Metamodeling

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 42

Metamodeling Applications Feature Modeling

Applications of Metamodeling
Feature Modeling

I Feature models are a tool for domain analysis
I Provide a hierarchical view of features and their dependencies
I Establish an ontology for categorization

I Visualized by feature diagrams

I Conceived for software domain analysis: Kang, Cohen, Hess, Novak,
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report CMU/SEI-90-TR-21. 1990.

I Popularized for Generative Programming by Czarnecki and Eisenäcker

I Also for analyzing other domains

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 42

Metamodeling Applications Feature Modeling

Feature Modeling
Example

Vehicle

EngineBody Gearbox Hitch

manual electrical Combustionautomatic

I Hierarchical, but not is-a relation (as in a class diagram)

I Features may be qualified as
required, optional, alternative, or n-of-m (selection)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 42

Metamodeling Applications Feature Modeling

Feature Modeling
MOF-based Metamodel

<<instanceof>> <<instanceof>>
<<instanceof>>

FM::SubfeatureGroup

1

FM::GroupKind

inv:value=="required"||value=="optional"||

inv:type=="String"

MOF::Class
attributes MOF::Attribute

type:String

value:String

kind
11 FM::GroupKind

value=="alternative"||value=="nOfM"
inv:parent==null

FM::Concept
FM::Concept

FM::Feature

features

n

n

groups

parent

1

MOF

Feature
Modelling

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 42

Metamodeling Applications Feature Modeling

Feature Modeling
Feature Model in Abstract Syntax

additionalFeatureSFG

FM::SubfeatureGroup

kind="optional"

AdditionalFeature

FM::Feature

name="AdditionalFeatures"

addFeatureTwoSFG

FM::SubfeatureGroup

kind="nOfM"

stackFeature:

FM::Concept

optimizationDFG

FM::SubfeatureGroup

name="Optimization"kind="optional"

optimizationKindSFGoptimizationFeature

FM::SubfeatureGroupFM::Feature

kind="alternative"

threadFeature

FM::Feature

name="ThreadSafety"

boundsFeature

FM::Feature

name="BoundsCheck"

typeFeature

FM::Feature

name="TypeCheck

speedFeature

FM::Feature

name="Speed"

memoryFeature

FM::Feature

name="MemoryUsage"

Additional

Memory

Optimization
Features

Speed
Usage Safety

Thread
Check
Bounds

Check
Type

Stack

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 36 / 42

Metamodeling Applications Feature Modeling

Feature Modeling
Extended Metamodel and Concrete Syntax

FM::Feature

open:boolean

optimizationFeature

FM::Feature

name="Optimization"

open=true [open]

Optimization

Metamodel Object diagram Feature diagram

New feature ⇒
I new attribute in metamodel

I new slot in model

I extension of concrete syntax

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 37 / 42

Metamodeling Applications Component Modeling

Applications of Metamodeling
Component Modeling

I Domain specific modeling language for small and embedded systems

I Main abstraction: component
I A component may

I provide services via interfaces
I require services via interfaces
I have configuration parameters
I be an application (does not provide services)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 38 / 42

Metamodeling Applications Component Modeling

Component Modeling
Example

SMSIF CallIF EMSIF

UIManager

MenuUtilities

TextEditor

SMSIF

<<application>>

SMSApp

GSMStack

lookAndFeel:String

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 39 / 42

Metamodeling Applications Component Modeling

Component Modeling
Simple Component Metamodel

Application

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application

inv: to.Interface = from.Interface

context PortDependency

{subsets
Attributes}

ConfigParam
*

1 *

ports

* 1

tofrom

Port

Dependency

ProvidedPortRequiredPort

Port InterfaceComponent

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 40 / 42

Metamodeling Applications Component Modeling

Component Modeling
MOF-based Simple Component Metamodel

Port
Dependency inv: to.Interface = from.Interface

context PortDependency

UML::

Attribute
UML::

Interface

*

{subsets Features}

Attributes

UML::Class
name: String

type: String

Port

Application

ConfigParam
*

Component
1 * * 1

ports

Attributes}
{subsets

RequiredPort ProvidedPort

Interface

tofrom
context ConfigParam

inv: type = "String"

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 41 / 42

Summary

Summary

I Model Driven Engineering requires customized models on many levels

I Metamodeling required for defining custom models

I MOF is OMG sanctioned toolbox for metamodeling

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 42 / 42

	Model Driven Engineering
	Goals of MDA
	Models

	Metamodeling
	Excursion: Classifiers and Instances
	Terminology
	Model and Metamodel
	OMG's Four Metalevels

	Metamodeling Applications
	Feature Modeling
	Component Modeling

	Summary

