
Software Engineering
Testing and Debugging — Testing II

Peter Thiemann

University of Freiburg, Germany



Introduction

Summary

I Specifications (motivation, contracts, pre- and postconditions,
what to think about)

I Testing (motivation, different kinds of testing, role in software
development, junit)

What’s next?
I More examples of test cases, presenting aspects of writing test

cases and features of JUnit

I How to write a good test case?

I How to construct a good collection of test cases (test suite)?



Introduction

Summary

I Specifications (motivation, contracts, pre- and postconditions,
what to think about)

I Testing (motivation, different kinds of testing, role in software
development, junit)

What’s next?
I More examples of test cases, presenting aspects of writing test

cases and features of JUnit

I How to write a good test case?

I How to construct a good collection of test cases (test suite)?



Basic JUnit Usage

A basic example of using junit.

1 public class Ex1 {

2 public static int find_min(int[] a) {

3 int x, i;

4 x = a[0];

5 for (i = 1; i < a.length;i ++) {

6 if (a[i] < x) x = a[i];

7 }

8 return x;

9 }

10 ...



Basic JUnit Usage

continued from previous page

1 ...

2 public static int[] insert(int[] x, int n)

3 {

4 int[] y = new int[x.length + 1];

5 int i;

6 for (i = 0; i < x.length; i++) {

7 if (n < x[i]) break;

8 y[i] = x[i];

9 }

10 y[i] = n;

11 for (; i < x.length; i++) {

12 y[i+1] = x[i];

13 }

14 return y;

15 }

16 }



Basic JUnit Usage

1 import org.junit .*;

2 import static org.junit.Assert .*;

3

4 public class Ex1Test {

5 @Test

6 public void testFind_min () {

7 int[] a = {5, 1, 7};

8 int res = Ex1.find_min(a);

9 assertEquals (1, res);

10 }

11

12 @Test

13 public void testInsert () {

14 int x[] = {2, 7};

15 int n = 6;

16 int res[] = Ex1.insert(x, n);

17 int expected [] = {2, 6, 7};

18 assertArrayEquals(expected , res);

19 }

20 }



Using the IUT to Setup or Check the Test

I May need to call methods in the class under test
I to set up a test case,
I to decide the outcome (testing oracle)

I How do we know that those methods do what they are
supposed to, so that the method which is actually under test
isn’t incorrectly blamed for a failure?

I Method design proceeds top-down, testing proceeds
bottom-up.

I There is usually some ordering such that at most one new
method is tested for each new test case.

I In the rare case of a circular dependency, the tester has to
decide on the cause of the failure.



Using the IUT to Setup or Check the Test

I May need to call methods in the class under test
I to set up a test case,
I to decide the outcome (testing oracle)

I How do we know that those methods do what they are
supposed to, so that the method which is actually under test
isn’t incorrectly blamed for a failure?

I Method design proceeds top-down, testing proceeds
bottom-up.

I There is usually some ordering such that at most one new
method is tested for each new test case.

I In the rare case of a circular dependency, the tester has to
decide on the cause of the failure.



Example

Using IUT to set up and decide test case, and use fixture and
common tests.

1 import java.util .*;

2

3 public class Ex2_Set <X> {

4 private ArrayList <X> arr;

5

6 public Ex2_Set () {

7 arr = new ArrayList <X>();

8 }

9

10 public void add(X x) {

11 for (int i = 0; i < arr.size(); i++) {

12 if (x.equals(arr.get(i))) return;

13 }

14 arr.add(x);

15 }

16 ...



Example cont’d

continued from previous page

1 ...

2 public boolean member(X x) {

3 for (int i = 0; i < arr.size(); i++) {

4 if (x.equals(arr.get(i))) return true;

5 }

6 return false;

7 }

8

9 public int size() {

10 return arr.size();

11 }

12

13 public void union(Ex2_Set <X> s) {

14 for (int i = 0; i < s.arr.size(); i++) {

15 add(s.arr.get(i));

16 }

17 }

18 }



Example cont’d

1 import org.junit .*;

2 import static org.junit.Assert .*;

3 import java.util .*;

4

5 public class Ex2_SetTest {

6

7 private Ex2_Set <String > s, s2;

8

9 @Before public void setup() {

10 s = new Ex2_Set <String >();

11 s.add("one"); s.add("two");

12 s2 = new Ex2_Set <String >();

13 s2.add("two"); s2.add("three");

14 }

15 ...



Example cont’d

1 ...

2 private void testset(String [] exp , Ex2_Set <

String > s) {

3 assertTrue(s.size() == exp.length);

4 for (int i = 0; i < s.size(); i++) {

5 assertTrue(s.member(exp[i]));

6 }

7 }

8

9 @Test public void test_union_1 () {

10 s.union(s2);

11 String [] exp = {"one", "two", "three"}

12 testset(exp , s);

13 }

14 }



Performing More Than one Test in the Same Method

I Best practise: only one test per test case method.

I In principle, it is possible to perform more than one test in a
test case method, because failures are reported as exceptions
(which includes line numbers where they occurred).

I Use only if unavoidable.



Preamble – Fixture

I Often several tests need to set up in the same or a similar way.

I This common setup of a set of tests is called preamble, or
fixture.

I Write submethods which perform the common setup, and
which are called from each test case.

I A slightly more convenient (but less flexible) way is to use the
JUnit @Before and @After annotations. Thus annotated
methods run before and after each test case.



Preamble – Fixture

I Often several tests need to set up in the same or a similar way.

I This common setup of a set of tests is called preamble, or
fixture.

I Write submethods which perform the common setup, and
which are called from each test case.

I A slightly more convenient (but less flexible) way is to use the
JUnit @Before and @After annotations. Thus annotated
methods run before and after each test case.



Preamble – Fixture

I Often several tests need to set up in the same or a similar way.

I This common setup of a set of tests is called preamble, or
fixture.

I Write submethods which perform the common setup, and
which are called from each test case.

I A slightly more convenient (but less flexible) way is to use the
JUnit @Before and @After annotations. Thus annotated
methods run before and after each test case.



Preamble – Fixture

I Often several tests need to set up in the same or a similar way.

I This common setup of a set of tests is called preamble, or
fixture.

I Write submethods which perform the common setup, and
which are called from each test case.

I A slightly more convenient (but less flexible) way is to use the
JUnit @Before and @After annotations. Thus annotated
methods run before and after each test case.



Testcases are Programs

I Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

I Write methods which are called by many test cases.

I As JUnit tests are implemented in Java, all Java features may
be used to make writing test cases more convenient.



Testcases are Programs

I Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

I Write methods which are called by many test cases.

I As JUnit tests are implemented in Java, all Java features may
be used to make writing test cases more convenient.



Testcases are Programs

I Often similar kinds of tests are used in many test cases to
decide if the succeeded or failed.

I Write methods which are called by many test cases.

I As JUnit tests are implemented in Java, all Java features may
be used to make writing test cases more convenient.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:
I Catch and analyse exceptions thrown by IUT in the test case

method, or
I Give an expected optional element of the @Test annotation.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:
I Catch and analyse exceptions thrown by IUT in the test case

method, or
I Give an expected optional element of the @Test annotation.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:
I Catch and analyse exceptions thrown by IUT in the test case

method, or
I Give an expected optional element of the @Test annotation.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:

I Catch and analyse exceptions thrown by IUT in the test case
method, or

I Give an expected optional element of the @Test annotation.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:
I Catch and analyse exceptions thrown by IUT in the test case

method, or

I Give an expected optional element of the @Test annotation.



Abnormal Termination

I JUnit propagates the result of an assertion by throwing an
exception.

I Default treatment: report failure if the IUT throws an
exception.

I Most of the time: correct behavior (no unhandled exceptions
in the IUT).

I To override this behaviour, there are two options:
I Catch and analyse exceptions thrown by IUT in the test case

method, or
I Give an expected optional element of the @Test annotation.



Exceptions – Example

Exception means failure:

1 @Test public void test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Exception means success:

1 @Test(expected=Exception.class) public void

test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }



Exceptions – Example

Exception means failure:

1 @Test public void test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }

Exception means success:

1 @Test(expected=Exception.class) public void

test_find_min_1 () {

2 int[] a = {};

3 int res = Ex1.find_min(a);

4 }



Non-termination

I Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

I Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

I Better way: use the timeout option of @Test

I If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

I If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.



Non-termination

I Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

I Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

I Better way: use the timeout option of @Test

I If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

I If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.



Non-termination

I Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

I Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

I Better way: use the timeout option of @Test

I If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

I If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.



Non-termination

I Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

I Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

I Better way: use the timeout option of @Test

I If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

I If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.



Non-termination

I Another general property that the IUT should have is that
when calling a method with fulfilled precondition, then
execution of the method should terminate.

I Non-termination becomes obvious when running a test suite,
because it hangs on a particular test.

I Better way: use the timeout option of @Test

I If termination (or running time) is an issue for a certain part
of the IUT, specify a timeout for the relevant test cases.

I If the execution of the tests does not terminate after this
time, JUnit reports a failure, and the test runner proceeds
with the remaining tests.



What is a Meaningful Test Case?



What is a Meaningful Test Case?

Meaningful Test Case

I Obvious: the outcome check at the end of the test should
signal success if the IUT did what it should, and failure if it
didn’t.

I Easier to forget: the setup before the call and the parameters
sent along should correspond to the intended usage of the
IUT.

In both cases we use the specification.

I The setup of the test should fulfill the specified precondition
of the tested method,

I the outcome check should adhere to the postcondition.



What is a Meaningful Test Case?

Meaningful Test Case

I Obvious: the outcome check at the end of the test should
signal success if the IUT did what it should, and failure if it
didn’t.

I Easier to forget: the setup before the call and the parameters
sent along should correspond to the intended usage of the
IUT.

In both cases we use the specification.

I The setup of the test should fulfill the specified precondition
of the tested method,

I the outcome check should adhere to the postcondition.



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

I f(2, 5, 6) = . . . valid 4

I f(1, 4, 4) = . . . valid 4

I f(3, 7, 5) = . . . not valid 8



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

I f(2, 5, 6) = . . . valid 4

I f(1, 4, 4) = . . . valid 4

I f(3, 7, 5) = . . . not valid 8



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

I f(2, 5, 6) = . . . valid 4

I f(1, 4, 4) = . . . valid 4

I f(3, 7, 5) = . . . not valid 8



1 public static void f(Integer a, Integer b,

Integer c) { ... }

Specification

Requires: a ≤ b and b ≤ c

Ensures: ...

Testing f():

I f(2, 5, 6) = . . . valid 4

I f(1, 4, 4) = . . . valid 4

I f(3, 7, 5) = . . . not valid 8



How to Write a Good Test Suite?

I Apart from having meaningful test cases and successfully
executing each test case, we also want the tests in a test suite
to test an IUT in as many different ways as possible.

I Maximize the chance that a bug is found by running the test
suite.

I Common approach: find a set of tests which has a good
coverage.

I We’ll consider different notions of coverage shortly.



Black-box and White-box Testing

The activity of deriving test cases can be divided into two
categories wrt the sources of information used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The code
can be used in addition to the specification to derive test cases.



Black-box and White-box Testing

The activity of deriving test cases can be divided into two
categories wrt the sources of information used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The code
can be used in addition to the specification to derive test cases.



Black-box and White-box Testing

The activity of deriving test cases can be divided into two
categories wrt the sources of information used.

Black-box testing

The tester has access to a specification and the compiled code
only. The specification is used to derive test cases and the code is
executed to see if it behaves correctly.

White-box testing

The tester has also access to the source code of the IUT. The code
can be used in addition to the specification to derive test cases.



Black-box Testing

I The basic idea is to analyse the specification and try to cover
all cases that it discriminates.

I In addition, the tests should include cornes cases of the
involved types.



Either . . . Or

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

I f(null) = . . .

I f({x, y}) = . . .



Either . . . Or

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

I f(null) = . . .

I f({x, y}) = . . .



Either . . . Or

The two alternatives represent two different situations.

1 public static Y f(X[] x) { ... }

Specification

Requires: x is either null or is non-null and contains at
least one element.

Ensures: ...

Testing f():

I f(null) = . . .

I f({x, y}) = . . .



If . . . Then . . . Otherwise

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2 ∗ m,
otherwise n = 2 ∗ m + 1

Testing half():

I half(4) = 2

I half(7) = 3



If . . . Then . . . Otherwise

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2 ∗ m,
otherwise n = 2 ∗ m + 1

Testing half():

I half(4) = 2

I half(7) = 3



If . . . Then . . . Otherwise

The two alternatives represent two different situations.

1 public static int half(int n) { ... }

Specification

Requires:

Ensures: Returns int, m, such that: If n is even n = 2 ∗ m,
otherwise n = 2 ∗ m + 1

Testing half():

I half(4) = 2

I half(7) = 3



Inequalities

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

I min(2, 5) = 2

I min(3, 3) = 3

I min(7, 1) = 1



Inequalities

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

I min(2, 5) = 2

I min(3, 3) = 3

I min(7, 1) = 1



Inequalities

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

I min(2, 5) = 2

I min(3, 3) = 3

I min(7, 1) = 1



Inequalities

The cases <, = and > represent different situations.

1 public static int min(int a, int b) { ... }

Specification

Requires:
Ensures: If a < b then returns a, otherwise returns b

Testing min():

I min(2, 5) = 2

I min(3, 3) = 3

I min(7, 1) = 1



Other sources of distinctions
I Objects – non-null or null

I Arrays – empty or non-empty

I Integers – zero, positive or negative

I Booleans – true or false



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



White-box Testing

I A white-box tester has more information at hand and may
write a better test suite.

I Not only the intended behavior but also the particular
implementation can be reflected in the test cases.

I The specification is still needed to check if each individual test
case is correct. (Correct use of IUT and test oracle)

I The normal way of making use of the source code is to write
test cases which “cover” the code as good as possible – code
coverage

I The idea is that, by exercising all parts of a program, a bug
should not be able to escape detection.

I Advantage: Code coverage is a quantitative measure of how
thouroughly an implementation has been tested.

I However, there are no field studies that support it. . .



Code Coverage

Coverage is a measure of the completeness of a test suite. It can
be defined in several ways.
Frequently discussed types of code coverage are

I Method coverage: Which methods have been called by the
test suite?

I Statement / Line coverage: Every statement in the code
should be executed at least once by the test suite.

I Decision / Branch coverage: For each branching point in the
program, all alternatives should be executed.

I Condition coverage: All boolean subexpressions of a decision
point should evaluate both to true and to false

I Path coverage: All possible execution paths should be
represented among the test cases. (Full path coverage is not
possible in general.)

Coverage tool: EclEmma, an Eclipse plugin



1 public static int[] merge(int[] x, int[] y)

2 {

3 int[] z = new int[x.length + y.length ];

4 int i, j;

5 for (i = 0, j = 0; i < x.length && j < y.

length ;) {

6 if (x[i] < y[j]) {

7 z[i + j] = x[i]; i++;

8 } else {

9 z[i + j] = y[j]; j++;

10 }

11 }

12 for (; i < x.length; i++) {

13 z[i + j] = x[i];

14 }

15 for (; j < x.length; j++) {

16 z[i + j] = y[j];

17 }

18 return z;

19 }



Path Coverage

Not possible to test all paths

Infinitely many in general – instead of all, test up to a given
maximum number of iterations of loops

Not all paths are possible

Due to the logical relationship between branching points not all
paths may be possible – keep in mind when deriving test cases



Path Coverage

Not possible to test all paths

Infinitely many in general – instead of all, test up to a given
maximum number of iterations of loops

Not all paths are possible

Due to the logical relationship between branching points not all
paths may be possible – keep in mind when deriving test cases



Summary (Testing)

I Informal software specifications

I Introduction to software testing (motivation, terminology)

I Writing test cases, in general and using JUnit

I Deriving test cases

I Black-box and white-box testing

I Code coverage


	Overview
	Aspects of Test Cases
	What is a Meaningful Test Case?
	How to Write a Good Test Suite
	Summary

