Software Engineering
Lecture 13: Design by Contract

Peter Thiemann

University of Freiburg, Germany

17.06.2013

Design by Contract

Table of Contents

Design by Contract
Contracts for Procedural Programs
Contracts for Object-Oriented Programs
Contract Monitoring
Verification of Contracts

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 2 /62

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 3/62

Design by Contract Contracts for Procedural Programs

Underlying ldea

Transfer the notion of contract between business partners to software
engineering.

What is a contract?

A binding agreement that explicitly states the obligations and the
benefits of each partner.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 4 /62

Design by Contract

Contracts for Procedural Programs

Example: Contract between Builder and Landowner

vided land in less than
six month

Obligations Benefits

Landowner | Provide 5 acres of | Get building in less
land; pay for building | than six months
if completed in time

Builder Build house on pro- | No need to do any-

thing if provided land
is smaller than 5 acres;
Receive payment if
house finished in time

Peter Thiemann (Univ. Freiburg)

Software Engineering

17.06.2013

5/ 62

Design by Contract Contracts for Procedural Programs

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods,

components/operations, . ..
In terms of software architecture, the partners are the components and

each connector may carry a contract.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 6 /62

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

> Goal: Specification of imperative procedures

» Approach: give assertions about the procedure

» Precondition

> must be true on entry
» ensured by caller of procedure

» Postcondition

> must be true on exit
> ensured by procedure if it terminates

> Precondition(State) = Postcondition(procedure(State))
> Notation: {Precondition} procedure {Postcondition}

> Assertions stated in first-order predicate logic

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

762

Design by Contract Contracts for Procedural Programs

Example

Consider the following procedure:

ok
x @param a an integer
x Qreturn integer square root of a
*/
int root (int a) {
inti =0;
int k = 1;
int sum = 1;
while (sum <= a) {
k = k+2;
i =i+1;
sum = sum-k;

}

return i;

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 8 /62

Design by Contract Contracts for Procedural Programs

Specification of root

> types guaranteed by compiler: a € integer and root € integer
(the result)

1. root as a partial function

Precondition: a > 0

Postcondition: root * root < a < (root + 1) * (root + 1)
2. root as a total function

Precondition: true
Postcondition:

(a>0 = rootxroot <a< (root+1)x*(root+ 1)
A

(a<0 = root=0)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 9 /62

Design by Contract Contracts for Procedural Programs

Weakness and Strength

Goal:

» find weakest precondition
a precondition that is implied by all other preconditions
highest demand on procedure
largest domain of procedure
(Q: what if precondition = false?)

» find strongest postcondition
a postcondition that implies all other postconditions
smallest range of procedure
(Q: what if postcondition = true?)

Met by “root as a total function”:
» true is weakest possible precondition

> “defensive programming”

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

10 / 62

Design by Contract Contracts for Procedural Programs

Example (Weakness and Strength)

Consider root as a function over integers
Precondition: true

Postcondition:

(a>0 = rootx*root <a< (root+1)x*(root+1))
A

(a<0 = root=0)

> true is the weakest precondition

» The postcondition can be strengthened to

(root >0) A
(2>0 = root*root < a < (root + 1) * (root + 1)) A
(a<0 = root =0)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 11 / 62

Design by Contract Contracts for Procedural Programs

An Example

Insert an element in a table of fixed size

class TABLE<T> {
int capacity; // size of table
int count; // number of elements in table
T get (String key) {...}
void put (T element, String key);

}

Precondition: table is not full
count < capacity

Postcondition: new element in table, count updated

count < capacity
A get(key) = element
A count = old count + 1

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

12 / 62

Design by Contract

Contracts for Procedural Programs

table so that it
may be retrieved
through key

Obligations Benefits
Caller Call put only on | Get modified table
non-full table in which element
is associated with
key
Procedure | Insert element in | No need to deal

with the case
where table is full
before insertion

Peter Thiemann (Univ. Freiburg)

Software Engineering

17.06.2013

13 / 62

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 14 / 62

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Contracts for methods have additional features

> local state
receiving object’s state must be specified

» inheritance and dynamic method dispatch
receiving object’s type may be different than statically expected,;
method may be overridden

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

15 / 62

Design by Contract Contracts for Object-Oriented Programs

Local State: Class Invariant

» class invariant INV is predicate that holds for all objects of the class
= must be established by all constructors

= must be maintained by all public methods

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 16 / 62

Design by Contract Contracts for Object-Oriented Programs

Pre- and Postconditions for Methods

» constructor methods ¢
{Pre.} c {INV}
» visible methods m

{Pren A INVY m {Post,, A INV}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

17 / 62

Design by Contract Contracts for Object-Oriented Programs

Table example revisited

> count and capacity are instance variables of class TABLE
> INVrppig is count < capacity

> specification of void put (T element, String key)
Precondition:
count < capacity

Postcondition:

get(key) = element A count = old count + 1

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 18 / 62

Design by Contract Contracts for Object-Oriented Programs

Inheritance and Dynamic Binding

> Subclass may override a method definition
» Effect on specification:

» Subclass may have different invariant
» Redefined methods may

> have different pre- and postconditions
> raise different exceptions
= method specialization

» Relation to invariant and pre-, postconditions in base class?

» Guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 19 / 62

Design by Contract Contracts for Object-Oriented Programs

Invariant of a Subclass

Suppose

‘class MYTABLE extends TABLE ...

» each property expected of a TABLE object should also be granted by a
MYTABLE object

» if o has type MYTABLE then /NV1yp e must hold for o
= INVwyrapre = INV1apie
» Example: MYTABLE might be a hash table with invariant

INVyyrapLe = count < capacity/3

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 20 / 62

Design by Contract Contracts for Object-Oriented Programs

Method Specialization

If MYTABLE redefines put then ...

» the precondition in the subclass must be weaker and
» the postcondition in the subclass must be stronger

than in the superclass because in

TABLE personnel = new MYTABLE (150);

personnel.put (new Terminator (3), ” Arnie”);

the caller

> only guarantees Prepy: table

> and expects Postyyt tabie

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

21/ 62

Design by Contract Contracts for Object-Oriented Programs

Requirements for Method Specialization

Suppose class T defines method m with assertions Pret ,, and Postt
throwing exceptions Excr ,,. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

» Prer , = Pres ,, and
» Posts ,, = Postr ,, and

» Excs ., C Excr
each exception thrown by S.m may also be thrown by T.m

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 22 /62

Design by Contract Contracts for Object-Oriented Programs

Example: MYTABLE. put

> PreMYTABLEmut = count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

> MYTABLE may automatically resize the table, so that Preyyrapie pue = true
is a sound method specialization because count < capacity = true!

> Suppose MYTABLE adds a new instance variable T lastInserted that holds

the last value inserted into the table.

PostuyrapLe,put = item(key) = element
A count = old count + 1
A lastInserted = element

is a sound method specialization because
Postyyrasie,put = POStrasLe put

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 23 /62

Design by Contract Contracts for Object-Oriented Programs

Interlude: Method Specialization since Java 5

» Overriding methods in Java 5 only allows specialization of the result
type. (It can be replaced by a subtype).

» The parameter types muss stay unchanged (why?)

Example : Assume B extends A

class Original {

Am(){

return new A();

}

class Specialization extends Original {
B m () { // overrides method Original.m()
return new B();

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 24 / 62

Design by Contract Contracts for Object-Oriented Programs

Interlude: NO Specialization

» Method specialization interferes with overloading in Java

» Class Specialization has two different methods

Example : Assume B extends A

class Original {
void m (B x) {
return;

}

class Specialization extends Original {
void m (A x) { // does NOT override method Original.m()
return;
}
}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

25 / 62

Design by Contract Contract Monitoring

Contract Monitoring

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 26 / 62

Design by Contract Contract Monitoring

Contract Monitoring

» What happens if a system’s execution violates an assertion at run
time?
» A violating execution runs outside the system'’s specification.
» The system'’s reaction may be arbitrary
» crash
> continue

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

Contract Monitoring

» What happens if a system’s execution violates an assertion at run
time?
» A violating execution runs outside the system'’s specification.
» The system'’s reaction may be arbitrary
» crash
> continue

Contract Monitoring

> evaluates assertions at run time
> raises an exception indicating any violation

» assign blame for the violation

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

Contract Monitoring

» What happens if a system’s execution violates an assertion at run
time?
» A violating execution runs outside the system'’s specification.
» The system'’s reaction may be arbitrary
» crash
> continue

Contract Monitoring

> evaluates assertions at run time
> raises an exception indicating any violation

» assign blame for the violation

Why monitor?

» Debugging (with different levels of monitoring)

» Software fault tolerance (e.g., « and 3 releases)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

What can go wrong

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization in class S
need to check (for all superclasses T of S)

» Prer ,, = Pres ,, on entry and
» Posts ,, = Postr ,, on exit

how?

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 28 / 62

Design by Contract Contract Monitoring

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x =new S() and consider x.m()
» on entry
> if Pret ,, holds, then Pres ,, must hold, too
> Pres ,, must hold
» If the precondition of S is not fulfilled, but the one of T is, then this
is a wrong method specialization.
> on exit
» Posts ,, must hold
> if Posts ,, holds, then Postt ,, must hold, too
» In general, with more than two classes:

» Cascade of implications between S and T must be checked.
» All intermediate pre- and postconditions must be checked.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 29 / 62

Design by Contract Contract Monitoring

Examples

interface 1Console {
@post { getMaxSize > 0 }
int getMaxSize();

@pre { s.length () < this.getMaxSize() }
void display (String s);

}

class Console implements IConsole {
Q@post { getMaxSize > 0 }
int getMaxSize () { ... }

@pre { s.length () < this.getMaxSize() }
void display (String s) { ... }

Peter Thiemann (Univ. Freiburg) Software Engineering

17.06.2013

30 / 62

Design by Contract Contract Monitoring

A Good Extension

class RunningConsole extends Console {
Q@pre { true }
void display (String s) {

super.display(String. substring (s, ..., ... + getMaxSize()))

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 31/62

Design by Contract Contract Monitoring

A Bad Extension

class PrefixedConsole extends Console {
String getPrefix() {
return 7 >> 7,
}
Qpre { s.length() < this.getMaxSize() — this.getPrefix().length() }
void display (String s) {
super.display (this.getPrefix() + s);

}

}

» caller may only guarantee IConsole’s precondition
» Console.display can be called with argument that is too long

» blame the programmer of PrefixedConsole!

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 32 /62

Design by Contract Contract Monitoring

Properties of Monitoring

» Assertions can be arbitrary side effect-free boolean expressions
» Instrumentation for monitoring can be generated from the assertions
» Monitoring can only prove the presence of violations, not their absence

> Absence of violations can only be guaranteed by formal verification

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 33 /62

Design by Contract Verification of Contracts

Verification of Contracts

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 34 /62

Design by Contract Verification of Contracts

Verification of Contracts

» Given: Specification of imperative procedure by Precondition and
Postcondition

» Goal: Formal proof for
Precondition(State) = Postcondition(procedure(State))
if procedure(State) terminates

» Method: Hoare Logic, i.e., a proof system for Hoare triples of the
form
{Precondition} procedure {Postcondition}

» named after C.A.R. Hoare, inventor of Quicksort, CSP, and many
other

» here: method bodies, no recursion, no pointers (extensions exist)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 35 /62

Design by Contract Verification of Contracts

Syntax of While

A small language to illustrate verification

E = c|x|E+E]|... expressions
B,P,Q = —-B|PAQ|PVQ boolean expressions
| E=E|E<E]|...
C,D = x=E assignment
| CD sequence
| if B then C else D conditional
| while Bdo C iteration
H n= {P}C{Q} Hoare triples

» (boolean) expressions are free of side effects

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

36 / 62

Design by Contract Verification of Contracts

Proof Rules for Hoare Triples

> Instead: define axioms and inferences rules
» Construct a derivation to prove the triple

» Choice of axioms and rules guided by structure of C

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

37 / 62

Design by Contract Verification of Contracts

Skip Axiom

{P} skip {P}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 38 /62

Design by Contract Verification of Contracts

Assignment Axiom

{P[x — E]} x=E {P}

Examples:

» {1=1} x=1{x==1}

» {odd(1)} x =1 {odd(x)}

> {(x==2xy+1} y=2xy {x==y+1}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

39 / 62

Design by Contract Verification of Contracts

Sequence Rule

(P} C{R} {R}D{Q}
{P} CG:D{Q}

Example:

x==2xy+1}y=2xy{x==y+1} {x=y+lly=y+1l{x==y}
{x==2xy+1}y=2xy;y=y+1{x==y}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 40 / 62

Design by Contract Verification of Contracts

Conditional Rule

{PAB} C{Q} {PAN-B} D {Q}

{P} if B then C else D {Q}

Peter Thiemann (Univ. Freiburg) Software Engineering

17.06.2013

41/ 62

Design by Contract Verification of Contracts

Conditional Rule — lIssues

Examples:

{PAx <0} z=—x{z==I|x|} {PAx >0} z=x{z==|x|}
{P} if x <0 then z = —x else z = x {z == |x|}

> incomplete!
» precondition for z = —x should be (z == |x|)[z — —x] = —x == |x]

= need logical rules

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 42 / 62

Design by Contract Verification of Contracts

Logical Rules

» weaken precondition

P=P {P}C{Q}
(P} C{Q}

> strengthen postcondition

{P} C{Q} Q= Q

{Pr C{Q}
» Example needs strengthening: P A x < 0= —x == |x]
» holds if P = true!
> similarly: PAx > 0= x == |x|

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 43 / 62

Design by Contract Verification of Contracts

Completed example:

x < 0= —x == x| {—x==|x]} z=—x {z == |x|}
D1 =
{x <0} z=—x{z==|x|}
D_x20:>x::|x| {x==Ix]} z=x{z==|x|}
T x>0 z=x{z==}
Dl D2
{x <0} z=—x{z==|x|} {x>0} z=x{z==|x|}
{true} if x < 0 then z = —x else z = x {z == |x|}
Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

44 / 62

Design by Contract Verification of Contracts

While Rule

{PAB} C{P}
{P} while B do C {P A—B}

» P is loop invariant

Example: try to prove

{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }
while sum <= a do

k = k+2;

i = 1i+1;

sum = sum+k
{ i*i <= a /\ a < (i+1)*(i+1) }

= while rule not directly applicable ...

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

45 / 62

Design by Contract Verification of Contracts

While Rule

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==
=>
ixi<=a /\ i>=0 /\ k==2%i+1 /\ sum==(i+1)*(i+1)

» P=ixi<aANi>0Nk==2xi+1Asum==(i+1)x(i+1)
holds on entry to the loop

» To prove that P is an invariant, requires to prove that
{PANsum<a} k=k+2;i=i+1;sum=sum+ k {P}

> It follows by the sequence rule and weakening:

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 46 / 62

Design by Contract Verification of Contracts

Proof of loop invariance

ixi<=a /\ i>=0
i>=0

k+2
i>=0
i+1>=1
= i+1

i*i<=a /\ i>=1
um = sum+tk
ixi<=a /\ i>=1
i*i<=a /\ i>=1
ixi<=a /\ i>=1
ixi<=a /\ i>=0

A A AN A AR A
H
v
[

Peter Thiemann (Univ. Freiburg)

/\
/\

/\
/\

/\
/\

/\
/\
/\
/\

==2%i+1 /\
k+2==2+2%i+1 /\
==2+2xi+1 /\
==2x(1+1)+1 /\
==2%i+1 /\
==2%i+1 /\
==2%i+1 /\
==2%i+1 /\
==2%i+1 /\

==2%i+1 /\

sum==(i+1)*(i+1)
sum==(i+1)*(i+1)

sum==(i+1)*(i+1)
sum==(i+1)*(i+1)

sum==1%i
sum+k==i*i+k

sum==i*i+k
sum==i*i+2*i+1
sum==(i+1)*(i+1)
sum==(i+1)* (i+1)

Software Engineering

/\
/\

/\
/\

/\
/\

/\
/\
/\

sum<=a }
sum<=a }

sum<=a }
sum<=a }

sum<=a }
sum+k<=a+k }

sum<=a+k }

sum<=a+k }
sum<=a+k }

17.06.2013 47 / 62

Design by Contract Verification of Contracts

Step 2: Apply the while rule

{PAsum<a} k=k+2;i=i+1;sum=sum+ k {P}
{P} while sum<ado k=k+2;i=i+1;sum=sum+ k {P A sum > a}

Now, P A sum > a is
{ i*i<=a /\ i>=0 /\ k==2xi+1 /\ sum==(i+1)*(i+1) /\ sum>a }

implies
{ ixi<=a /\ a<(i+1)*(i+1) }

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 48 / 62

Design by Contract Verification of Contracts

Soundness of the Rules

» Intuitively, the proof rules are ok.

» But are they sound?

» Is there a definition from which {P} C {Q} can be proved directly?
» Answer: Yes!

>

Each rule can be proved correct from this definition.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 49 / 62

Design by Contract Verification of Contracts

Semantics — Domains and Types

BValue = true | false

IValue = 0]1]...

o € State = Variable — Value

&l . Expression x State — [Value

B[] . BoolExpression x State — BValue
ST . State, — State,

» State, := StateU{ L}

» result L indicates non-termination

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 50 / 62

Design by Contract Verification of Contracts

Semantics — Expressions

Elc]o = c
Elx]o = o(x)
E[E+F]o = E[E]o+ E[F]o

BIE=Flo = £[E]o = E[Flo
B[-B]Jo = -B[B]o

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 51 /62

Design by Contract Verification of Contracts

Semantics — Statements

S[C]L = 1

S[skip]o = o

S[x=E]o = o[x— E[E]o]

S[C;D]o = S[D](S[C]o)

S[if B then C else D]jo = B[B]o =true — S[C]o , S[D]o
S[while B do CJo = F(o)

where F(o) = B[B]o =true — F(S[C]o), o

» McCarthy conditional: b — e1, e

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 52 /62

Design by Contract Verification of Contracts

Proving a Hoare triple

Theorem
{P} C{Q}

» holds if (Vo € State) P(o) = (Q(S[C]o) vV S[C]o = 1)
(partial correctness)

» alternative reading/notation: P, Q C State
{P} C{Qt=S[C]PC QUL

» reading predicates as boolean expressions
B[P]o = true = (B[Q](S[C]o) = true V S[C]o = 1)

Proof

By induction on the derivation of {P} C {Q}:

For each Hoare rule, if the above hypothesis holds for the assumptions,
then it holds for the conclusion.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 53 /62

Design by Contract Verification of Contracts

Skip Axiom — Correctness

{P} skip {P}

Correctness

» S[skip]o =0

» Assume B[P]o = true. Then B[P](S[skip]c) = B[P]o = true

Peter Thiemann (Univ. Freiburg) Software Engineering

17.06.2013

54 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness

{P[x— E]} x=E {P}

» Semantics: S[x=EJo = o[x — E[E]0]
» Under assumption B[P[x — E]]o = true show that
(B[P](S[x = E]o) = true V S[x = E]o = 1)
< (B[P](o[x — E[E]o]) = true V S[x = E]o = 1)
» Requires induction on P:

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

55 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness |l

» Prove B[P[x — E]]o = B[P](c[x — E[E]o]) by induction on P.
> Case P =—Q:
B[-Q[x — E]lo & -B[Q[x — E]Jc 2 -B[Q](s[x — E[E]o]) &
B[-Q](c[x — E[E]o])
» Cases P= QA Q and P = Q V Q' analogously.
» Case P=E' = E":
BI(E' = E")x — Ellc ([E'[x — E]Jo = E[E"[x — E]]o)
» Need another lemma:
E[E'[x — E]]o = E[E]o[x — E[E]o]
— (E[EJolx — E[ELo] = EIE"]olx — EIE]o])
© EIE" = E"olx — E[E]o]
» Case P = E’' < E” etc: analogously.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 56 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness |lI

Remains to show that E[E'[x — E]]o = E[E']o[x — E[E]o] by induction
on E'.
» Case E' = x:
Elx[x — E]Jo = E[E]o = E[x]o[x — E[E] 0]
» Case E'=y, y #x:
Elylx — Ello = Eylo = o(y) = alx — E[E]ol(y) = E[ylolx —
E€[E]o]

» Case E' = —E”: Immediate by induction.
E[-E"[x — E]]o & —€[E"[x — E]Jo & —£[E"]o[x — E[E]o] &
E[-E"]o[x — E[E]o]

» Case E' = E"” + E" etc: analogously.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 57 / 62

Design by Contract Verification of Contracts

Sequence Rule — Correctness

{Py C{R} {R} D{Q}
{P} G:D {Q}

Proof

» Assume B[P]o = true

» Induction on {P} C {R} yields

B[R](S[C]o) = true v S[C]o = L

If S[C]o = L then the rule is correct because S[C;D]o = L.

Otherwise: induction on {R} C {Q} yields

B[Q[(S[D](S[C]o)) = true vV S[D](S[C]o) = L

Recall that S[D](S[C]o) & S[C;D]o

If S[D](S[C]o) = L then the rule is correct because S[C;D]o = L.

Otherwise: B[Q](S[C;D]o) = true QED

v

v

v

v

v

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 58 / 62

Design by Contract Verification of Contracts

Conditional Rule — Correctness

{PAB} C{Q} {PA-B}D{Q}
{P} if B then C else D {Q}

Correctness

» Show: o € P implies S[if B then C else D] € QU {1}

» Exercise

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

59 / 62

Design by Contract Verification of Contracts

Logical Rules — Correctness

» weaken precondition

P=P {P}CIQ}
(P} C{Q}

» strengthen postcondition

{PrC{Q} Q=¢q
{Py C{@}

Correctness
P" = P iff P" C P (as set of states)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

60 / 62

Design by Contract Verification of Contracts

While-Rule — Correctness

{PANB} C{P}
{P} while B do C {P A—B}

» Consider the semantics of while: S[while B do Cllo = F(0o)
where F(L) = 1 and F(c) = B[B]o = true — F(S[C]o), o
» It is sufficient to show (fixpoint induction):
If (Vo € P), Flo) e PA=BV{Ll}
then (Vo € P), B[B]o = true — F(S[C]o),0c € PA-BV {Ll}
» Case B[B]o = true:
By induction on {P A B} C {P},
either S[Clo = L (then F(S[C]o) = F(L) = L completes the proof),
or S[C]o € P (then F(S[C]o) € PA-BV {L} completes the proof)
» Case B[B]o = false:
Then o € PA-B. QED

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 61 / 62

Design by Contract Verification of Contracts

Properties of Formal Verification

> requires more restrictions on assertions (e.g., use a certain logic) than
monitoring

» full compliance of code with specification can be guaranteed
> scalability and expressivity are challenging research topics:

>

>
>
>

full automatization

manageable for small/medium examples

large examples require manual interaction

real programs use dynamic datastructures (pointers, objects) and
concurrency

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013

62 / 62

	Design by Contract
	Contracts for Procedural Programs
	Contracts for Object-Oriented Programs
	Contract Monitoring
	Verification of Contracts

