
Software Engineering
Lecture 13: Design by Contract

Peter Thiemann

University of Freiburg, Germany

17.06.2013

Design by Contract

Table of Contents

Design by Contract
Contracts for Procedural Programs
Contracts for Object-Oriented Programs
Contract Monitoring
Verification of Contracts

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 2 / 62

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 3 / 62

Design by Contract Contracts for Procedural Programs

Underlying Idea

Transfer the notion of contract between business partners to software
engineering.

What is a contract?
A binding agreement that explicitly states the obligations and the
benefits of each partner.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 4 / 62

Design by Contract Contracts for Procedural Programs

Example: Contract between Builder and Landowner

Obligations Benefits
Landowner Provide 5 acres of

land; pay for building
if completed in time

Get building in less
than six months

Builder Build house on pro-
vided land in less than
six month

No need to do any-
thing if provided land
is smaller than 5 acres;
Receive payment if
house finished in time

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 5 / 62

Design by Contract Contracts for Procedural Programs

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods,
components/operations, . . .
In terms of software architecture, the partners are the components and
each connector may carry a contract.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 6 / 62

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

I Goal: Specification of imperative procedures

I Approach: give assertions about the procedure

I Precondition
I must be true on entry
I ensured by caller of procedure

I Postcondition
I must be true on exit
I ensured by procedure if it terminates

I Precondition(State) ⇒ Postcondition(procedure(State))

I Notation: {Precondition} procedure {Postcondition}
I Assertions stated in first-order predicate logic

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 7 / 62

Design by Contract Contracts for Procedural Programs

Example

Consider the following procedure:

/∗∗
∗ @param a an integer
∗ @return integer square root of a
∗/

int root (int a) {
int i = 0;
int k = 1;
int sum = 1;
while (sum <= a) {

k = k+2;
i = i+1;
sum = sum+k;

}
return i;

}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 8 / 62

Design by Contract Contracts for Procedural Programs

Specification of root

I types guaranteed by compiler: a ∈ integer and root ∈ integer
(the result)

1. root as a partial function

Precondition: a ≥ 0
Postcondition: root ∗ root ≤ a < (root + 1) ∗ (root + 1)

2. root as a total function

Precondition: true
Postcondition:

(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1))
∧
(a < 0 ⇒ root = 0)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 9 / 62

Design by Contract Contracts for Procedural Programs

Weakness and Strength

Goal:

I find weakest precondition
a precondition that is implied by all other preconditions
highest demand on procedure
largest domain of procedure
(Q: what if precondition = false?)

I find strongest postcondition
a postcondition that implies all other postconditions
smallest range of procedure
(Q: what if postcondition = true?)

Met by “root as a total function”:

I true is weakest possible precondition

I “defensive programming”

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 10 / 62

Design by Contract Contracts for Procedural Programs

Example (Weakness and Strength)

Consider root as a function over integers

Precondition: true

Postcondition:
(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1))
∧
(a < 0 ⇒ root = 0)

I true is the weakest precondition

I The postcondition can be strengthened to

(root ≥ 0) ∧
(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1)) ∧
(a < 0 ⇒ root = 0)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 11 / 62

Design by Contract Contracts for Procedural Programs

An Example

Insert an element in a table of fixed size

class TABLE<T> {
int capacity; // size of table
int count; // number of elements in table
T get (String key) {...}
void put (T element, String key);

}

Precondition: table is not full
count < capacity

Postcondition: new element in table, count updated

count ≤ capacity
∧ get(key) = element
∧ count = old count + 1

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 12 / 62

Design by Contract Contracts for Procedural Programs

Obligations Benefits
Caller Call put only on

non-full table
Get modified table
in which element
is associated with
key

Procedure Insert element in
table so that it
may be retrieved
through key

No need to deal
with the case
where table is full
before insertion

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 13 / 62

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 14 / 62

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Contracts for methods have additional features

I local state
receiving object’s state must be specified

I inheritance and dynamic method dispatch
receiving object’s type may be different than statically expected;
method may be overridden

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 15 / 62

Design by Contract Contracts for Object-Oriented Programs

Local State: Class Invariant

I class invariant INV is predicate that holds for all objects of the class

⇒ must be established by all constructors

⇒ must be maintained by all public methods

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 16 / 62

Design by Contract Contracts for Object-Oriented Programs

Pre- and Postconditions for Methods

I constructor methods c

{Prec} c {INV }

I visible methods m

{Prem ∧ INV } m {Postm ∧ INV }

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 17 / 62

Design by Contract Contracts for Object-Oriented Programs

Table example revisited

I count and capacity are instance variables of class TABLE

I INVTABLE is count ≤ capacity

I specification of void put (T element, String key)

Precondition:
count < capacity

Postcondition:

get(key) = element ∧ count = old count + 1

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 18 / 62

Design by Contract Contracts for Object-Oriented Programs

Inheritance and Dynamic Binding

I Subclass may override a method definition
I Effect on specification:

I Subclass may have different invariant
I Redefined methods may

I have different pre- and postconditions
I raise different exceptions
⇒ method specialization

I Relation to invariant and pre-, postconditions in base class?

I Guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T .

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 19 / 62

Design by Contract Contracts for Object-Oriented Programs

Invariant of a Subclass

Suppose

class MYTABLE extends TABLE ...

I each property expected of a TABLE object should also be granted by a
MYTABLE object

I if o has type MYTABLE then INV TABLE must hold for o

⇒ INV MYTABLE ⇒ INV TABLE

I Example: MYTABLE might be a hash table with invariant

INV MYTABLE ≡ count ≤ capacity/3

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 20 / 62

Design by Contract Contracts for Object-Oriented Programs

Method Specialization

If MYTABLE redefines put then . . .

I the precondition in the subclass must be weaker and

I the postcondition in the subclass must be stronger

than in the superclass because in

TABLE personnel = new MYTABLE (150);
...
personnel.put (new Terminator (3), ”Arnie”);

the caller

I only guarantees Preput,Table
I and expects Postput,Table

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 21 / 62

Design by Contract Contracts for Object-Oriented Programs

Requirements for Method Specialization

Suppose class T defines method m with assertions PreT ,m and PostT ,m

throwing exceptions ExcT ,m. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

I PreT ,m ⇒ PreS ,m and

I PostS ,m ⇒ PostT ,m and

I ExcS ,m ⊆ ExcT ,m

each exception thrown by S .m may also be thrown by T .m

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 22 / 62

Design by Contract Contracts for Object-Oriented Programs

Example: MYTABLE.put

I PreMYTABLE,put ≡ count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

I MYTABLE may automatically resize the table, so that PreMYTABLE,put ≡ true
is a sound method specialization because count < capacity⇒ true!

I Suppose MYTABLE adds a new instance variable T lastInserted that holds
the last value inserted into the table.

PostMYTABLE,put ≡ item(key) = element
∧ count = old count + 1
∧ lastInserted = element

is a sound method specialization because
PostMYTABLE,put ⇒ PostTABLE,put

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 23 / 62

Design by Contract Contracts for Object-Oriented Programs

Interlude: Method Specialization since Java 5

I Overriding methods in Java 5 only allows specialization of the result
type. (It can be replaced by a subtype).

I The parameter types muss stay unchanged (why?)

Example : Assume B extends A

class Original {
A m () {

return new A();
}

}
class Specialization extends Original {

B m () { // overrides method Original.m()
return new B();

}
}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 24 / 62

Design by Contract Contracts for Object-Oriented Programs

Interlude: NO Specialization

I Method specialization interferes with overloading in Java

I Class Specialization has two different methods

Example : Assume B extends A

class Original {
void m (B x) {

return;
}

}
class Specialization extends Original {

void m (A x) { // does NOT override method Original.m()
return;

}
}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 25 / 62

Design by Contract Contract Monitoring

Contract Monitoring

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 26 / 62

Design by Contract Contract Monitoring

Contract Monitoring
I What happens if a system’s execution violates an assertion at run

time?
I A violating execution runs outside the system’s specification.
I The system’s reaction may be arbitrary

I crash
I continue

Contract Monitoring

I evaluates assertions at run time

I raises an exception indicating any violation

I assign blame for the violation

Why monitor?

I Debugging (with different levels of monitoring)

I Software fault tolerance (e.g., α and β releases)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

Contract Monitoring
I What happens if a system’s execution violates an assertion at run

time?
I A violating execution runs outside the system’s specification.
I The system’s reaction may be arbitrary

I crash
I continue

Contract Monitoring

I evaluates assertions at run time

I raises an exception indicating any violation

I assign blame for the violation

Why monitor?

I Debugging (with different levels of monitoring)

I Software fault tolerance (e.g., α and β releases)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

Contract Monitoring
I What happens if a system’s execution violates an assertion at run

time?
I A violating execution runs outside the system’s specification.
I The system’s reaction may be arbitrary

I crash
I continue

Contract Monitoring

I evaluates assertions at run time

I raises an exception indicating any violation

I assign blame for the violation

Why monitor?

I Debugging (with different levels of monitoring)

I Software fault tolerance (e.g., α and β releases)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 27 / 62

Design by Contract Contract Monitoring

What can go wrong

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization in class S
need to check (for all superclasses T of S)

I PreT ,m ⇒ PreS ,m on entry and
I PostS ,m ⇒ PostT ,m on exit

how?

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 28 / 62

Design by Contract Contract Monitoring

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x = new S() and consider x .m()

I on entry
I if PreT ,m holds, then PreS,m must hold, too
I PreS,m must hold

I If the precondition of S is not fulfilled, but the one of T is, then this
is a wrong method specialization.

I on exit
I PostS,m must hold
I if PostS,m holds, then PostT ,m must hold, too

I In general, with more than two classes:
I Cascade of implications between S and T must be checked.
I All intermediate pre- and postconditions must be checked.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 29 / 62

Design by Contract Contract Monitoring

Examples

interface IConsole {
@post { getMaxSize > 0 }
int getMaxSize();

@pre { s.length () < this.getMaxSize() }
void display (String s);

}

class Console implements IConsole {
@post { getMaxSize > 0 }
int getMaxSize () { ... }

@pre { s.length () < this.getMaxSize() }
void display (String s) { ... }

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 30 / 62

Design by Contract Contract Monitoring

A Good Extension

class RunningConsole extends Console {
@pre { true }
void display (String s) {

...
super.display(String. substring (s, ..., ... + getMaxSize()))
...

}
}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 31 / 62

Design by Contract Contract Monitoring

A Bad Extension

class PrefixedConsole extends Console {
String getPrefix() {

return ”>> ”;
}
@pre { s.length() < this.getMaxSize() − this.getPrefix().length() }
void display (String s) {

super.display (this.getPrefix() + s);
}

}

I caller may only guarantee IConsole’s precondition

I Console.display can be called with argument that is too long

I blame the programmer of PrefixedConsole!

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 32 / 62

Design by Contract Contract Monitoring

Properties of Monitoring

I Assertions can be arbitrary side effect-free boolean expressions

I Instrumentation for monitoring can be generated from the assertions

I Monitoring can only prove the presence of violations, not their absence

I Absence of violations can only be guaranteed by formal verification

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 33 / 62

Design by Contract Verification of Contracts

Verification of Contracts

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 34 / 62

Design by Contract Verification of Contracts

Verification of Contracts

I Given: Specification of imperative procedure by Precondition and
Postcondition

I Goal: Formal proof for
Precondition(State) ⇒ Postcondition(procedure(State))
if procedure(State) terminates

I Method: Hoare Logic, i.e., a proof system for Hoare triples of the
form

{Precondition} procedure {Postcondition}

I named after C.A.R. Hoare, inventor of Quicksort, CSP, and many
other

I here: method bodies, no recursion, no pointers (extensions exist)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 35 / 62

Design by Contract Verification of Contracts

Syntax of While
A small language to illustrate verification

E ::= c | x | E + E | . . . expressions
B,P,Q ::= ¬B | P ∧ Q | P ∨ Q boolean expressions

| E = E | E ≤ E | . . .
C ,D ::= x=E assignment

| C ;D sequence
| if B then C else D conditional
| while B do C iteration

H ::= {P}C{Q} Hoare triples

I (boolean) expressions are free of side effects

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 36 / 62

Design by Contract Verification of Contracts

Proof Rules for Hoare Triples

I Instead: define axioms and inferences rules

I Construct a derivation to prove the triple

I Choice of axioms and rules guided by structure of C

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 37 / 62

Design by Contract Verification of Contracts

Skip Axiom

{P} skip {P}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 38 / 62

Design by Contract Verification of Contracts

Assignment Axiom

{P[x 7→ E]} x = E {P}

Examples:

I {1 == 1} x = 1 {x == 1}
I {odd(1)} x = 1 {odd(x)}
I {x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 39 / 62

Design by Contract Verification of Contracts

Sequence Rule

{P} C {R} {R} D {Q}
{P} C ;D {Q}

Example:

{x == 2 ∗ y + 1} y = 2 ∗ y {x == y + 1} {x == y + 1} y = y + 1 {x == y}
{x == 2 ∗ y + 1} y = 2 ∗ y ; y = y + 1 {x == y}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 40 / 62

Design by Contract Verification of Contracts

Conditional Rule

{P ∧ B} C {Q} {P ∧ ¬B} D {Q}
{P} if B then C else D {Q}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 41 / 62

Design by Contract Verification of Contracts

Conditional Rule — Issues

Examples:

{P ∧ x < 0} z = −x {z == |x |} {P ∧ x ≥ 0} z = x {z == |x |}
{P} if x < 0 then z = −x else z = x {z == |x |}

I incomplete!

I precondition for z = −x should be (z == |x |)[z 7→ −x] ≡ −x == |x |
⇒ need logical rules

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 42 / 62

Design by Contract Verification of Contracts

Logical Rules

I weaken precondition

P ′ ⇒ P {P} C {Q}
{P ′} C {Q}

I strengthen postcondition

{P} C {Q} Q ⇒ Q ′

{P} C {Q ′}

I Example needs strengthening: P ∧ x < 0 ⇒ −x == |x |
I holds if P ≡ true!

I similarly: P ∧ x ≥ 0 ⇒ x == |x |

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 43 / 62

Design by Contract Verification of Contracts

Completed example:

D1 =
x < 0 ⇒ −x == |x | {−x == |x |} z = −x {z == |x |}

{x < 0} z = −x {z == |x |}

D2 =
x ≥ 0 ⇒ x == |x | {x == |x |} z = x {z == |x |}

{x ≥ 0} z = x {z == |x |}

D1

{x < 0} z = −x {z == |x |}
D2

{x ≥ 0} z = x {z == |x |}
{true} if x < 0 then z = −x else z = x {z == |x |}

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 44 / 62

Design by Contract Verification of Contracts

While Rule

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

I P is loop invariant

Example: try to prove

{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }
while sum <= a do
k = k+2;
i = i+1;
sum = sum+k

{ i*i <= a /\ a < (i+1)*(i+1) }

⇒ while rule not directly applicable . . .

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 45 / 62

Design by Contract Verification of Contracts

While Rule

Step 1: Find the loop invariant

a>=0 /\ i==0 /\ k==1 /\ sum==1
=>
i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1)

I P ≡ i ∗ i ≤ a ∧ i ≥ 0 ∧ k == 2 ∗ i + 1 ∧ sum == (i + 1) ∗ (i + 1)
holds on entry to the loop

I To prove that P is an invariant, requires to prove that
{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}

I It follows by the sequence rule and weakening:

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 46 / 62

Design by Contract Verification of Contracts

Proof of loop invariance

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i>=0 /\ k+2==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

k = k+2

{ i>=0 /\ k==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

{ i+1>=1 /\ k==2*(i+1)+1 /\ sum==(i+1)*(i+1) /\ sum<=a }

i = i+1

{ i>=1 /\ k==2*i+1 /\ sum==i*i /\ sum<=a }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum+k==i*i+k /\ sum+k<=a+k }

sum = sum+k

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+k /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==i*i+2*i+1 /\ sum<=a+k }

{ i*i<=a /\ i>=1 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum<=a+k }

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) }

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 47 / 62

Design by Contract Verification of Contracts

Step 2: Apply the while rule

{P ∧ sum ≤ a} k = k + 2; i = i + 1; sum = sum + k {P}
{P} while sum ≤ a do k = k + 2; i = i + 1; sum = sum + k {P ∧ sum > a}

Now, P ∧ sum > a is

{ i*i<=a /\ i>=0 /\ k==2*i+1 /\ sum==(i+1)*(i+1) /\ sum>a }
implies
{ i*i<=a /\ a<(i+1)*(i+1) }

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 48 / 62

Design by Contract Verification of Contracts

Soundness of the Rules

I Intuitively, the proof rules are ok.

I But are they sound?

I Is there a definition from which {P} C {Q} can be proved directly?

I Answer: Yes!

I Each rule can be proved correct from this definition.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 49 / 62

Design by Contract Verification of Contracts

Semantics — Domains and Types

BValue = true | false
IValue = 0 | 1 | . . .
σ ∈ State = Variable → Value

EJK : Expression × State → IValue
BJK : BoolExpression × State → BValue
SJK : State⊥ → State⊥

I State⊥ := State ∪ {⊥}
I result ⊥ indicates non-termination

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 50 / 62

Design by Contract Verification of Contracts

Semantics — Expressions

EJcKσ = c
EJxKσ = σ(x)
EJE+F Kσ = EJEKσ + EJF Kσ
. . .
BJE=F Kσ = EJEKσ = EJF Kσ
BJ¬BKσ = ¬BJBKσ
. . .

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 51 / 62

Design by Contract Verification of Contracts

Semantics — Statements

SJCK⊥ = ⊥
SJskipKσ = σ
SJx=EKσ = σ[x 7→ EJEKσ]
SJC ;DKσ = SJDK(SJCKσ)
SJif B then C else DKσ = BJBKσ = true→ SJCKσ , SJDKσ
SJwhile B do CKσ = F (σ)

where F (σ) = BJBKσ = true→ F (SJCKσ) , σ

I McCarthy conditional: b → e1, e2

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 52 / 62

Design by Contract Verification of Contracts

Proving a Hoare triple
Theorem

{P} C {Q}

I holds if (∀σ ∈ State) P(σ) ⇒ (Q(SJCKσ) ∨ SJCKσ = ⊥)
(partial correctness)

I alternative reading/notation: P,Q ⊆ State
{P} C {Q} ≡ SJCKP ⊆ Q ∪ ⊥

I reading predicates as boolean expressions
BJPKσ = true⇒ (BJQK(SJCKσ) = true ∨ SJCKσ = ⊥)

Proof
By induction on the derivation of {P} C {Q}:
For each Hoare rule, if the above hypothesis holds for the assumptions,
then it holds for the conclusion.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 53 / 62

Design by Contract Verification of Contracts

Skip Axiom — Correctness

{P} skip {P}

Correctness

I SJskipKσ = σ

I Assume BJPKσ = true. Then BJPK(SJskipKσ) = BJPKσ = true

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 54 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness

{P[x 7→ E]} x = E {P}

I Semantics: SJx=EKσ = σ[x 7→ EJEKσ]

I Under assumption BJP[x 7→ E]Kσ = true show that
(BJPK(SJx = EKσ) = true ∨ SJx = EKσ = ⊥)
⇔ (BJPK(σ[x 7→ EJEKσ]) = true ∨ SJx = EKσ = ⊥)

I Requires induction on P:

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 55 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness II

I Prove BJP[x 7→ E]Kσ = BJPK(σ[x 7→ EJEKσ]) by induction on P.

I Case P ≡ ¬Q:

BJ¬Q[x 7→ E]Kσ def
= ¬BJQ[x 7→ E]Kσ IH

= ¬BJQK(σ[x 7→ EJEKσ])
def
=

BJ¬QK(σ[x 7→ EJEKσ])

I Cases P ≡ Q ∧ Q ′ and P ≡ Q ∨ Q ′ analogously.

I Case P ≡ E ′ = E ′′:

BJ(E ′ = E ′′)[x 7→ E]Kσ def
= (EJE ′[x 7→ E]Kσ = EJE ′′[x 7→ E]Kσ)

I Need another lemma:
EJE ′[x 7→ E]Kσ = EJE ′Kσ[x 7→ EJEKσ]

= (EJE ′Kσ[x 7→ EJEKσ] = EJE ′′Kσ[x 7→ EJEKσ])
def
= EJE ′ = E ′′Kσ[x 7→ EJEKσ]

I Case P ≡ E ′ ≤ E ′′ etc: analogously.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 56 / 62

Design by Contract Verification of Contracts

Assignment Axiom — Correctness III

Remains to show that EJE ′[x 7→ E]Kσ = EJE ′Kσ[x 7→ EJEKσ] by induction
on E ′.

I Case E ′ ≡ x :
EJx [x 7→ E]Kσ = EJEKσ = EJxKσ[x 7→ EJEKσ]

I Case E ′ ≡ y , y 6= x :
EJy [x 7→ E]Kσ = EJyKσ = σ(y) = σ[x 7→ EJEKσ](y) = EJyKσ[x 7→
EJEKσ]

I Case E ′ ≡ −E ′′: Immediate by induction.

EJ−E ′′[x 7→ E]Kσ def
= −EJE ′′[x 7→ E]Kσ IH

= −EJE ′′Kσ[x 7→ EJEKσ]
def
=

EJ−E ′′Kσ[x 7→ EJEKσ]

I Case E ′ ≡ E ′′ + E ′′′ etc: analogously.

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 57 / 62

Design by Contract Verification of Contracts

Sequence Rule — Correctness

{P} C {R} {R} D {Q}
{P} C ;D {Q}

Proof

I Assume BJPKσ = true

I Induction on {P} C {R} yields
BJRK(SJCKσ) = true ∨ SJCKσ = ⊥

I If SJCKσ = ⊥ then the rule is correct because SJC ;DKσ = ⊥.

I Otherwise: induction on {R} C {Q} yields
BJQK(SJDK(SJCKσ)) = true ∨ SJDK(SJCKσ) = ⊥

I Recall that SJDK(SJCKσ)
def
= SJC ;DKσ

I If SJDK(SJCKσ) = ⊥ then the rule is correct because SJC ;DKσ = ⊥.

I Otherwise: BJQK(SJC ;DKσ) = true QED

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 58 / 62

Design by Contract Verification of Contracts

Conditional Rule — Correctness

{P ∧ B} C {Q} {P ∧ ¬B} D {Q}
{P} if B then C else D {Q}

Correctness

I Show: σ ∈ P implies SJif B then C else DK ∈ Q ∪ {⊥}
I Exercise

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 59 / 62

Design by Contract Verification of Contracts

Logical Rules — Correctness

I weaken precondition

P ′ ⇒ P {P} C {Q}
{P ′} C {Q}

I strengthen postcondition

{P} C {Q} Q ⇒ Q ′

{P} C {Q ′}

Correctness
P ′ ⇒ P iff P ′ ⊆ P (as set of states)

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 60 / 62

Design by Contract Verification of Contracts

While-Rule — Correctness

{P ∧ B} C {P}
{P} while B do C {P ∧ ¬B}

I Consider the semantics of while: SJwhile B do CKσ = F (σ)
where F (⊥) = ⊥ and F (σ) = BJBKσ = true→ F (SJCKσ), σ

I It is sufficient to show (fixpoint induction):
If (∀σ ∈ P), F (σ) ∈ P ∧ ¬B ∨ {⊥}
then (∀σ ∈ P), BJBKσ = true→ F (SJCKσ), σ ∈ P ∧ ¬B ∨ {⊥}

I Case BJBKσ = true:
By induction on {P ∧ B} C {P},
either SJCKσ = ⊥ (then F (SJCKσ) = F (⊥) = ⊥ completes the proof),
or SJCKσ ∈ P (then F (SJCKσ) ∈ P ∧ ¬B ∨ {⊥} completes the proof)

I Case BJBKσ = false:
Then σ ∈ P ∧ ¬B. QED

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 61 / 62

Design by Contract Verification of Contracts

Properties of Formal Verification

I requires more restrictions on assertions (e.g., use a certain logic) than
monitoring

I full compliance of code with specification can be guaranteed
I scalability and expressivity are challenging research topics:

I full automatization
I manageable for small/medium examples
I large examples require manual interaction
I real programs use dynamic datastructures (pointers, objects) and

concurrency

Peter Thiemann (Univ. Freiburg) Software Engineering 17.06.2013 62 / 62

	Design by Contract
	Contracts for Procedural Programs
	Contracts for Object-Oriented Programs
	Contract Monitoring
	Verification of Contracts

