
Softwaretechnik
Program verification

Albert-Ludwigs-Universität Freiburg

June 20, 2013

Softwaretechnik June 20, 2013 1 / 24



Road Map

Program verification

Automatic program verification

Programs with loops
Programs with recursive function calls

Softwaretechnik June 20, 2013 2 / 24



Proving Program Correctness: General Approach

Program annotation

Annotation @F at program location L asserts that formula F
is true whenever program control reaches L

Special annotation: function specification

Precondition = specifies what should be true upon entering
Postcondition = specifies what must hold after executing

Proving Program Correctness

Input: Program with annotations

Translate input to first order formula f

Validity of f implies program correctness

Softwaretechnik June 20, 2013 3 / 24



Outline

Proving partial correctness

Programs with loops

Programs with recursive function calls

Softwaretechnik June 20, 2013 4 / 24



Proving Partial Correctness

Recall

A function f is partially correct if
when f ’s precondition is satisfied on entry and f terminates,
then f ’s postcondition is satisfied.

Automatic Verification

Function + annotation is transformed to finite set of FOL
formulae, the verification conditions (VCs)

If all VCs are valid, then the function obeys its specification
(partially correct)

Softwaretechnik June 20, 2013 5 / 24



Proving Partial Correctness

Recall

A function f is partially correct if
when f ’s precondition is satisfied on entry and f terminates,
then f ’s postcondition is satisfied.

Automatic Verification

Function + annotation is transformed to finite set of FOL
formulae, the verification conditions (VCs)

If all VCs are valid, then the function obeys its specification
(partially correct)

Softwaretechnik June 20, 2013 5 / 24



Programs with Loops

Loop invariants

Each loop must be annotated with a loop invariant, @L

while loop: L must hold

at the beginning of each iteration before the loop condition is
evaluated

for loop: L must hold

after the loop initialization, and
before the loop condition is evaluated

Softwaretechnik June 20, 2013 6 / 24



Basic Paths: Loops

To handle loops, we break the function into basic paths.

Basic Path

@ ← precondition or loop invariant

finite sequence of instructions
(no loop invariants)

@ ← loop invariant, assertion, or postcondition

Softwaretechnik June 20, 2013 7 / 24



Basic Paths: Conditionals

Basic paths split at conditionals

Replace each path BP[if B then S1 else S2] by two paths

BP[assume B;S1]

BP[assume ¬B;S2]

Semantics of “assume B”

Execution ends unless B holds

Softwaretechnik June 20, 2013 8 / 24



Example: LinearSearch

@pre 0 ≤ ` ∧ u < a.length
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool LinearSearch(int[] a, int `, int u, int e) {
for

@L : ` ≤ i ∧ (∀j . ` ≤ j < i → a[j ] 6= e)
(int i := `; i ≤ u; i := i + 1) {
if (a[i ] = e) return true;
}
return false;
}

Softwaretechnik June 20, 2013 9 / 24



Example: Basic Paths of LinearSearch

(1)
@pre 0 ≤ ` ∧ u < a.length
i := `;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e

(2)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i ≤ u;
assume a[i ] = e;
rv := true;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e

Softwaretechnik June 20, 2013 10 / 24



Example: Basic Paths of LinearSearch

(3)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i ≤ u;
assume a[i ] 6= e;
i := i + 1;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e

(4)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i > u;
rv := false;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e

Softwaretechnik June 20, 2013 11 / 24



Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

@pre

L

@post

(1)

(2),(4)

(3)

Softwaretechnik June 20, 2013 12 / 24



Proving Partial Correctness

Goal

Prove that annotated function f agrees with annotations

Transform f to finite set of verification conditions VC

Validity of VC implies that function behaviour agrees with
annotations

Weakest precondition wp(F , S)

Informally: What must hold before executing statement S to
ensure that formula F holds afterwards?

wp(F , S) = weakest formula such that executing S results
in formula that satisfies F

For all states σ such that σ ∈ wp(F , S): successor state
SJSKσ ∈ F .

Softwaretechnik June 20, 2013 13 / 24



Proving Partial Correctness

Weakest preconditions for each statement

Assumption: What must hold before statement assume B is
executed to ensure that F holds afterward?

wp(F , assume B) ⇔ B → F

Assignment: What must hold before statement x := e is
executed to ensure that F [x ] holds afterward?

wp(F [x ], x := e) ⇔ F [e]

(“substitute x with e”)

Sequence of statements S1; . . . ; Sn (n > 1),
wp(F , S1; . . . ; Sn) ⇔ wp(wp(F , Sn), S1; . . . ; Sn−1)

Softwaretechnik June 20, 2013 14 / 24



Proving Partial Correctness

Verification condition of basic path

@ F
S1;
. . .
Sn;
@ G

is defined as

F → wp(G , S1; . . . ; Sn)

This verification condition is often denoted by the Hoare triple

{F}S1; . . . ; Sn{G}

Softwaretechnik June 20, 2013 15 / 24



Proving Partial Correctness

Approach

Input: Annotated program

Compute the set P of all basic paths (finite)

For all p ∈ P: generate verification condition VC (p)

Check validity of
∧

p∈P VC (p)

Theorem
If
∧

p∈P VC (p) is valid, then each function agrees with its
annotation.

Softwaretechnik June 20, 2013 16 / 24



Example 1: VC of basic path

(1)
@ F : x ≥ 0
S1 : x := x + 1;
@ G : x ≥ 1

The VC is
F → wp(G , S1)

That is,
wp(G , S1)
⇔ wp(x ≥ 1, x := x + 1)
⇔ (x ≥ 1){x Z⇒ x + 1}
⇔ x + 1 ≥ 1
⇔ x ≥ 0

Therefore the VC of path (1)
x ≥ 0 → x ≥ 0 ,

which is valid.
Softwaretechnik June 20, 2013 17 / 24



Example 2: VC of basic path (2) of LinearSearch

(2)
@L : F : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
S1 : assume i ≤ u;
S2 : assume a[i ] = e;
S3 : rv := true;
@post G : rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e

The VC is: F → wp(G , S1; S2;S3)

wp(G , S1;S2;S3)
⇔ wp(wp(rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e, rv := true), S1;S2)
⇔ wp(true ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1;S2)
⇔ wp(∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1;S2)
⇔ wp(wp(∃j . ` ≤ j ≤ u ∧ a[j ] = e, assume a[i ] = e), S1)
⇔ wp(a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1)
⇔ wp(a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e, assume i ≤ u)
⇔ i ≤ u → (a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e)

Softwaretechnik June 20, 2013 18 / 24



Outline

Proving partial correctness

Programs with loops

Programs with recursive function calls

Softwaretechnik June 20, 2013 19 / 24



Basic Paths: Recursive Function Calls

Loops produce unbounded number of paths
loop invariants cut loops to produce
finite number of basic paths

Recursive calls produce unbounded number of paths
function specifications cut function calls

Function specification

Add function summary for each function call

Instantiate pre- and postcondition with parameters of
recursive call

Softwaretechnik June 20, 2013 20 / 24



Example: BinarySearch

The recursive function BinarySearch searches subarray of sorted
array a of integers for specified value e.

sorted: weakly increasing order, i.e.

sorted(a, `, u) ⇔ ∀i , j . ` ≤ i ≤ j ≤ u → a[i ] ≤ a[j ]

Function specifications

Function postcondition (@post)
It returns true iff a contains the value e in the range [`, u]

Function precondition (@pre)
It behaves correctly only if 0 ≤ ` and u < a.length

Softwaretechnik June 20, 2013 21 / 24



Example: BinarySearch

@pre 0 ≤ ` ∧ u < a.length ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (`+ u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a,m + 1, u, e);
else return BinarySearch(a, `,m − 1, e);
}
}

Softwaretechnik June 20, 2013 22 / 24



Example: Binary Search with Function Call Assertions

@pre 0 ≤ ` ∧ u < a.length ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (`+ u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) {

@pre 0 ≤ m + 1 ∧ u < a.length ∧ sorted(a,m + 1, u);
bool tmp := BinarySearch(a,m + 1, u, e);
@post tmp ↔ ∃i . m + 1 ≤ i ≤ u ∧ a[i ] = e; return tmp;
} else {

@pre 0 ≤ ` ∧ m − 1 < a.length ∧ sorted(a, `,m − 1);
bool tmp := BinarySearch(a, `,m − 1, e);
@post tmp ↔ ∃i . ` ≤ i ≤ m − 1 ∧ a[i ] = e;
return tmp;
}
}
}

Softwaretechnik June 20, 2013 23 / 24



Summary

Automatic verification of sequential programs

Goal: Proof of partial correctness

Program specification

Pre- and postconditions
Loop invariants

Tools

Basic paths
Weakest precondition
Verification conditions
Function summaries

Softwaretechnik June 20, 2013 24 / 24


