
Software Engineering
Lecture 16: Specification with Types

Peter Thiemann

University of Freiburg, Germany

04.07.2013

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 1 / 21



Contents

Specification with Types
Excursion: Scripting Languages
Ultra-Brief JavaScript Tutorial
Thesis

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 2 / 21



Specification with Types Excursion: Scripting Languages

Excursion to a World Without Types:
Scripting Languages

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 3 / 21



Specification with Types Excursion: Scripting Languages

Scripting Languages

I Lightweight programming languages
evolved from command languages

I Lightweight data structures
hashmap (object), strings

I Lightweight syntax
familiar, no semicolon, (often not well specified), . . .

I Lightweight typing
dynamic, weak, duck typing

I Lightweight metaprogramming

I Lightweight implementation
interpreted, few tools

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 4 / 21



Specification with Types Excursion: Scripting Languages

JavaScript, a Typical Scripting Language

I Initially developed by Brendan Eich of Netscape Corp.

I Standardized as ECMAScript (ECMA-262 Edition 5.1)
I Application areas (scripting targets)

I client-side web scripting (dynamic HTML, SVG, XUL, GWT)
I server-side scripting (Whitebeam, Cocoon, iPlanet, nodejs)
I animation scripting (diablo, dim3, k3d)
I cloud scripting (Google Apps Script)

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 5 / 21



Specification with Types Excursion: Scripting Languages

JavaScript, Technically

I Java-style syntax
I Object-based imperative language

I no classes, but prototype concept
I objects are hashtables

I First-class functions
I a functional language

I Weak, dynamic type system

Slogan: Any type can be converted to
any other reasonable type

node.onmouseout =

function (ev) {

init();

state++;

node.className =

"highlight-"

+ state;

ev.stopPropagation();

};

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 6 / 21



Specification with Types Excursion: Scripting Languages

Problems with JavaScript

Symptomatic for other scripting languages

I No module system
I No namespace management
I No interface descriptions

I No static type system

I No application specific datatypes
primitive datatypes, strings, hashtables

I Type conversions are sometimes surprising
“A scripting language should never throw an exception [the script
should just continue]” (Rob Pike, Google)

⇒ Conceived for small applications, but . . .

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 7 / 21



Specification with Types Excursion: Scripting Languages

Specific Problems with JavaScript

I Most popular applications
I client-side scripting
I AJAX

I Dynamic modification of page content via DOM interface
I DOM = document object model
I W3C standard interface for accessing and modifying XML
I Mainly used in web browers

I Incompatible DOM implementations in Web browsers

⇒ programming recipes instead of techniques

⇒ platform independent libraries like jQuery

I Security holes via dynamically loaded code or XSS

⇒ sandboxing, analysis

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 8 / 21



Specification with Types Excursion: Scripting Languages

Specific Problems with JavaScript

I Most popular applications
I client-side scripting
I AJAX

I Dynamic modification of page content via DOM interface
I DOM = document object model
I W3C standard interface for accessing and modifying XML
I Mainly used in web browers

I Incompatible DOM implementations in Web browsers

⇒ programming recipes instead of techniques

⇒ platform independent libraries like jQuery

I Security holes via dynamically loaded code or XSS

⇒ sandboxing, analysis

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 8 / 21



Specification with Types Excursion: Scripting Languages

Can You Write Reliable Programs in JavaScript?

I Struggle with the lack of e.g. a module system
I Ad-hoc structuring of large programs
I Naming conventions
I Working in a team

I Work around DOM incompatibilities
I Use existing JavaScript frameworks (widgets, networking)
I Frameworks are also incompatible

I Wonder about unexpected results

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 9 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps named
properties to values.

Rule 2:
Every value has a type. For most reasonable combinations, values can be
converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object, and function.

Rule 4:
‘Undefined’ is a value (and a type).

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 10 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps named
properties to values.

Rule 2:
Every value has a type. For most reasonable combinations, values can be
converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object, and function.

Rule 4:
‘Undefined’ is a value (and a type).

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 10 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps named
properties to values.

Rule 2:
Every value has a type. For most reasonable combinations, values can be
converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object, and function.

Rule 4:
‘Undefined’ is a value (and a type).

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 10 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps named
properties to values.

Rule 2:
Every value has a type. For most reasonable combinations, values can be
converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object, and function.

Rule 4:
‘Undefined’ is a value (and a type).

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 10 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Some Quick Questions

Let’s define an object obj:

js> var obj = { x: 1 }

What are the values/outputs of

I obj.x

I obj.y

I print(obj.y)

I obj.y.z

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 11 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Answers

js> var obj = {x:1}
js> obj.x

1

js> obj.y

js> print(obj.y)

undefined

js> obj.y.z

js: "<stdin>", line 12: uncaught JavaScript exception:

ConversionError: The undefined value has no properties.

(<stdin>; line 12)

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 12 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript II

Rule 5:
An object is really a dynamic mapping from strings to values.

js> var x = "x"

js> obj[x]

1

js> obj.undefined = "gotcha"

gotcha

js> obj[obj.y]

What is the effect/result of the last expression?

== "gotcha"

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 13 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript II

Rule 5:
An object is really a dynamic mapping from strings to values.

js> var x = "x"

js> obj[x]

1

js> obj.undefined = "gotcha"

gotcha

js> obj[obj.y]

== obj[undefined]

== obj["undefined"]

== obj.undefined

== "gotcha"

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 14 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript III

Recall Rule 2:
Every value has a type. For most reasonable combinations, values can be
converted from one type to another type.

js> var a = 17

js> a.x = 42

42

js> a.x

What is the effect/result of the last expression?

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 15 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript III

Wrapper objects for numbers

js> m = new Number (17); n = new Number (4)

js> m+n

21

Wrapper objects for booleans

js> flag = new Bool(false);

js> result = flag ? true : false;

What is the value of result?

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 16 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript III

Wrapper objects for numbers

js> m = new Number (17); n = new Number (4)

js> m+n

21

Wrapper objects for booleans

js> flag = new Bool(false);

js> result = flag ? true : false;

What is the value of result?

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 16 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Weak, Dynamic Types in JavaScript IV

Rule 6:
Functions are first-class, but behave differently when used as methods or
as constructors.

js> function f () { return this.x }
js> f()

x

js> obj.f = f

function f() { return this.x; }
js> obj.f()

1

js> new f()

[object Object]

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 17 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Distinguishing Absence and Undefinedness I

js> obju = { u : {}.xx }
[object Object]

js> objv = { v : {}.xx }
[object Object]

js> print(obju.u)

undefined

js> print(objv.u)

undefined

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 18 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Distinguishing Absence and Undefinedness II

Rule 7:
The with construct puts its argument object on top of the current
environment stack.

js> u = "defined"

defined

js> with (obju) print(u)

undefined

js> with (objv) print(u)

defined

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 19 / 21



Specification with Types Ultra-Brief JavaScript Tutorial

Distinguishing Absence and Undefinedness III

Rule 8:
The for construct has an in operator to range over all defined indexes.

js> for (i in obju) print(i)

u

js> for (i in objv) print(i)

v

js> delete objv.v

true

js> for (i in objv) print(i)

js> delete objv.v

true

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 20 / 21



Specification with Types Thesis

Thesis

I Common errors such as
I using non-objects as objects

e.g. using numbers as functions
I invoking non-existing methods
I accessing non-existing fields
I surprising conversions

can all be caught by a

Static Type System
I and much more.

Peter Thiemann (Univ. Freiburg) Software Engineering 04.07.2013 21 / 21


	Specification with Types
	Excursion: Scripting Languages
	Ultra-Brief JavaScript Tutorial
	Thesis


