Software Engineering Lecture 17: Types and Type Soundness

Peter Thiemann

University of Freiburg, Germany

08.07.2013

Peter Thiemann (Univ. Freiburg)

Software Engineering

08.07.2013 1 / 35

Table of Contents

Types and Type Correctness

JAUS: Java-Expressions (Ausdrücke) Evaluation of Expressions Type correctness Result

Types and Type Correctness

- Large software systems: many people involved
 - project manager, designer, programmer, tester, ...
- Essential: divide into components with clear defined interfaces and specifications
 - How to divide the problem?
 - How to divide the work?
 - How to divide the tests?
- Problems
 - Are suitable libraries available?
 - Do the components match each other?
 - Do the components fulfill their specification?

Requirements

- Programming language/environment has to ensure:
 - each component implements its interfaces
 - the implementation fulfills the specification
 - each component is used correctly
- Main problem: meet the interfaces and specifications
 - Minimal interface: management of names Which operations does the component offer?
 - Minimal specification: types Which types do the arguments and the result of the operations have?
 - See interfaces in Java

Questions

- Which kind of security do types provide?
- Which kind of errors can be detected by using types?
- How do we provide type safety?
- How can we formalize type safety?

JAUS: Java-Expressions (Ausdrücke)

Grammar for a subset of Java expressions

X	::=		variables
n	::=	0 1	numbers
b	::=	true false	truth values
е	::=	$x \mid n \mid b \mid e + e \mid !e$	expressions

Correct and Incorrect Expressions

type correct expressions

boolean flag;					
true					
17+4					
!flag					

expressions with type errors

```
int rain_since_April20;
boolean flag;
...
!rain_since_April20
flag+1
17+(!false)
!(2+3)
```

Typing Rules

- For each kind of expression a typing rule defines
 - if an expression is type correct and
 - how to obtain the result type of the expression from the types of the subexpressions.
- Five kinds of expressions
 - Constant numbers have type int.
 - Truth values have type boolean.
 - The expression e_1+e_2 has type int, if e_1 and e_2 have type int.
 - ▶ The expression !e has type boolean, if e has type boolean.
 - A variable x has the type, with which it was declared.

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Formalization of "Type Correct Expressions"

The Language of Types

t ::= int | boolean types

Typing judgment: expression e has type t

 $\vdash e:t$

Formalization of "Typing Rules"

- A typing judgment is valid, if it is derivable according to the typing rules.
- ► To infer a valid typing judgment *J* we use a **deduction system**.
- A deduction system consists of a set of typing judgments and a set of typing rules.
- ► A typing rule (*inference rule*) is a pair (J₁...J_n, J₀) which consists of a list of judgments (*assumptions*, J₁...J_n) and a judgment (*conclusion*, J₀) that is written as

$$\frac{J_1 \dots J_n}{J_0}$$

• If n = 0, a rule (ε, J_0) is an *axiom*.

Example: Typing Rules for JAUS

► A number *n* has type int.

(INT) $\vdash n: int$

A truth value has type boolean.

(BOOL) ⊢ b:boolean

An expression e_1+e_2 has type int if e_1 and e_2 have type int. (ADD) $\vdash e_1 : int \vdash e_2 : int$ $\vdash e_1+e_2 : int$

▶ An expression !e has type boolean, if e has type boolean.

 $\frac{(\text{NOT})}{\vdash e: \text{boolean}}$

Peter Thiemann (Univ. Freiburg)

Software Engineering

Derivation Trees and Validity

- A judgment J is valid if a derivation tree for J exists.
- **Definition**: A derivation tree for the judgment J is either
 - 1. J, if J is an instance of an axiom, or

2. $\frac{\mathcal{J}_1 \dots \mathcal{J}_n}{J}$, if $\frac{J_1 \dots J_n}{J}$ is an instance of a rule and each \mathcal{J}_k is a derivation tree for J_k .

Example: Derivation Trees

(INT)

- ► ⊢ 0 : int is a derivation tree for judgment ⊢ 0 : int. (BOOL)
- ▶ \vdash true : boolean is a derivation tree for \vdash true : boolean.
- The judgment \vdash 17 + 4 : int holds, because of the derivation tree

(ADD)				
(INT)	(INT)			
\vdash 17 : int	\vdash 4 : int			
\vdash 17 + 4 : int				

Variable

- Programs declare variables
- Programs use variables according to their declaration
- Declarations are collected in a type environment.

 $A ::= \emptyset \mid A, x : t$ type environment

An open typing judgment contains a type environment: The expression *e* has the type *t* in the type environment *A*.

 $A \vdash e : t$

Typing rule for variables:
 A variable has the type, with which it is declared.

$$(VAR) \frac{x: t \in A}{A \vdash x: t}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

Extension of the Remaining Typing Rules

► The typing rules propagate the typing environment.

```
(INT)
         A \vdash n: int
         (BOOL)
         A \vdash b: int
(ADD)
A \vdash e_1: int A \vdash e_2: int
      A \vdash e_1 + e_2: int
     (NOT)
      A \vdash !e: boolean
      A \vdash e: boolean
```

Peter Thiemann (Univ. Freiburg)

Software Engineering

Example: Derivation with Variable

The declaration boolean flag; matches the type assumption

 $A = \emptyset, \texttt{flag}: \texttt{boolean}$

Hence the derivation

 $\frac{\texttt{flag:boolean} \in A}{A \vdash \texttt{flag:boolean}}$ $\frac{A \vdash \texttt{flag:boolean}}{A \vdash \texttt{!flag:boolean}}$

Intermediate Result

- Formal system for
 - syntax of expressions and types (CFG, BNF)
 - typing judgments
 - validity of typing judgments
- Open questions
 - How to evaluate expressions?
 - Connection between evaluation and typing judgments

Types and Type Correctness Evaluation of Expressions

Evaluation of Expressions

Peter Thiemann (Univ. Freiburg)

Software Engineering

08.07.2013 18 / 35

Approach: Syntactic Rewriting

- Define a binary reduction relation $e \longrightarrow e'$ over expressions
- ► Expression e reduces in one step to e' (Notation: e → e') if one computational step leads from e to e'.
- Example:
 - ▶ $5+2 \longrightarrow 7$
 - ▶ (5+2)+14 → 7+14

Result of Computations

- A value v is a number or a truth value.
- An expression can reach a value after many steps:
 - 0 steps: 0
 - ▶ 1 step: $5+2 \longrightarrow 7$
 - ▶ 2 steps: $(5+2)+14 \longrightarrow 7+14 \longrightarrow 21$
- but
 - ▶ !4711
 - 1+false
 - ▶ $(1+2)+false \longrightarrow 3+false$
- These expressions cannot perform a reduction step. They correspond to run-time errors.
- Observation: these errors are type errors!

Formalization: Results and Reduction Steps

A value is a number or a truth value.

$$v ::= n \mid b$$
 values

- One reduction step
 - If the two operands are numbers, we can add the two numbers to obtain a number as result.

$$\frac{(\text{B-ADD})}{\lceil n_1 \rceil + \lceil n_2 \rceil \longrightarrow \lceil n_1 + n_2 \rceil}$$

 $\lceil n \rceil$ stands for the syntactic representation of the number *n*.

If the operand of a negation is a truth value, the negation can be performed.

Peter Thiemann (Univ. Freiburg)

Software Engineering

Formalization: Nested Expressions

What happens if the operands of operations are not values? Evaluate the subexpressions first.

Negation

$$\begin{array}{c} (\text{B-NEG}) \\ \underline{e \longrightarrow e'} \\ \hline \underline{!e \longrightarrow !e'} \end{array}$$

Addition, first operand

$$\frac{(\text{B-ADD-L})}{e_1 \longrightarrow e'_1}$$
$$\frac{e_1 \longrightarrow e'_1}{e_1 + e_2 \longrightarrow e'_1 + e_2}$$

Addition, second operand (only evaluate the second, if the first is a value)

$$\frac{(\text{B-ADD-R})}{e \longrightarrow e'}$$
$$\frac{e \longrightarrow e'}{v + e \longrightarrow v + e'}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

Variable

- An expression that contains variables cannot be evaluated with the reduction steps.
- Eliminate variables with substitution, *i.e.*, replace each variable with a value. Then reduction can proceed.
- ▶ Applying a substitution [v₁/x₁,...v_n/x_n] to an expression e, written as

$$e[v_1/x_1,\ldots,v_n/x_n]$$

changes in e each occurrence of x_i to the corresponding value v_i .

Example:

- (!flag)[false/flag] \equiv !false
- $(m+n)[25/m, 17/n] \equiv 25+17$

Type Correctness Informally

- Type correctness: If there exists a type for an expression e, then e evaluates to a value in a finite number of steps.
- In particular, no run-time error happens.
- For the language JAUS the converse also holds (this is not correct in general, like in full Java).
- Prove in two steps (after Wright and Felleisen) Assume e has a type, then it holds:

Progress: Either *e* is a value or there exists a reduction step for *e*. Preservation: If $e \rightarrow e'$, then e' and *e* have the same type. Progress

If $\vdash e : t$ is derivable, then e is a value or there exists e' with $e \longrightarrow e'$. Proof Induction over the derivation tree of $\mathcal{J} = \vdash e : t$. (INT) If $\vdash n :$ int is the final step of \mathcal{J} , then $e \equiv n$ is a value (and $t \equiv int$). (BOOL) If $\vdash b :$ boolean is the last step of \mathcal{J} , then $e \equiv b$ is a value (and $t \equiv int$). Progress: Addition (ADD) If $\frac{\vdash e_1 : \text{int} \vdash e_2 : \text{int}}{\vdash e_1 + e_2 : \text{int}}$ is the final step of \mathcal{J} , then it holds that $e \equiv e_1 + e_2$ and $t \equiv \text{int}$. Moreover, it is derivable that $\vdash e_1 : \text{int}$ and $\vdash e_2 : \text{int}$. The induction hypothesis tells us that e_1 is a value or there exists an e'_1 with $e_1 \longrightarrow e'_1$.

- If e₁ → e'₁ holds, we obtain that e ≡ e₁+e₂ → e' ≡ e'₁+e₂ cause of rule (B-ADD-L). This is the desired result.
- In the case e₁ ≡ v₁ is a value, we concentrate on ⊢ e₂ : int. The induction hypothesis says that e₂ is either a value or there exists an e'₂ with e₂ → e'₂.
 - ▶ In the second case we can use rule (B-ADD-R) and get: $e \equiv v_1 + e_2 \longrightarrow e' \equiv v_1 + e'_2.$
 - In the first case (e₂ = v₁), we can prove easily that v₁ ≡ n₁ and v₂ ≡ n₂ are both numbers. Hence, we can apply the rule (B-ADD) and obtain the desired e'.

Peter Thiemann (Univ. Freiburg)

Software Engineering

Progress: Negation (NOT)

If $\frac{\vdash e_1 : \text{boolean}}{\vdash !e_1 : \text{boolean}}$ is the last step of \mathcal{J} , it holds that $e \equiv !e_1$ and $t \equiv \text{boolean}$ and $\vdash e_1 : \text{boolean}$ is derivable. Using the induction hypothesis (e_1 is a value or there exists e' with

- $e \longrightarrow e'$) there are two cases.
 - ▶ In the case that $e_1 \longrightarrow e'_1$, we conclude that there exists e' with $e \longrightarrow e'$ using rule (B-NEG).
 - ▶ If $e_1 \equiv v$ is a value, it's easy to prove that v is a truth value. Hence, we can apply the rule (B-TRUE) or (B-FALSE).

QED

Preservation

If $\vdash e : t$ and $e \longrightarrow e'$, then $\vdash e' : t$. Proof Induction on the derivation $e \longrightarrow e'$. (B-ADD) If $\frac{1}{\lceil n_1 \rceil + \lceil n_2 \rceil} \longrightarrow \lceil n_1 + n_2 \rceil$ is the reduction step, then it holds that $t \equiv \text{int because of (ADD)}$. We can apply (INT) to $e' = \lceil n_1 + n_2 \rceil$ and obtain the desired result $\vdash \lceil n_1 + n_2 \rceil$: int.

(B-TRUE)

If $\frac{1}{|\texttt{true} \longrightarrow \texttt{false}|}$ is the reduction step it holds that $t \equiv \texttt{boolean}$ because of (NOT). We can apply (BOOL) to e' = false and get the desired result $\vdash \texttt{false}$: boolean.

The case for rule B-FALSE is analoguous.

Preservation: Addition (B-ADD-L) If $\frac{e_1 \longrightarrow e'_1}{e_1 + e_2 \longrightarrow e'_1 + e_2}$ is the occasion for the last step, we obtain through $\vdash e: t$ that (ADD) $\frac{\vdash e_1: int \quad \vdash e_2: int}{\vdash e_1 + e_2: int}$ holds with $e \equiv e_1 + e_2$ and $t \equiv int$.

From $\vdash e_1$: int and $e_1 \longrightarrow e'_1$ it follows by induction that $\vdash e'_1$: int holds. Another application of (ADD) on $\vdash e'_1$: int and $\vdash e_2$: int yields $\vdash e'_1 + e_2$: int. The case of rule (B-ADD-R) is analoguous.

Preservation: Negation (B-NEG) If $\frac{e_1 \longrightarrow e'_1}{|e_1 \longrightarrow |e'_1|}$ is the occasion for the last step, we get through $\vdash e: t$, that

 $\frac{(\text{NOT})}{\vdash e_1:\text{boolean}} \\ \frac{\vdash e_1:\text{boolean}}{\vdash !e_1:\text{boolean}}$

holds with $e \equiv !e_1$ and $t \equiv boolean$.

From $\vdash e_1$: boolean and $e_1 \longrightarrow e'_1$ we conclude (using induction) that $\vdash e'_1$: boolean holds. Another application of rule (NOT) to $\vdash e'_1$: boolean yields $\vdash !e'_1$: boolean.

QED

Elimination of Variables by Substitution

Intention

If $x_1 : t_1, \ldots, x_n : t_n \vdash e : t$ and $\vdash v_i : t_i$ (for all *i*), then it holds $\vdash e[v_1/x_1, \ldots, v_1/x_1] : t$.

Assertion

If $A', x_0 : t_0 \vdash e : t$ and $A' \vdash e_0 : t_0$, then it holds $A' \vdash e[e_0/x_0] : t$.

Prove

Induction over derivation of $A \vdash e : t$ with $A \equiv A', x_0 : t_0$. (VAR)

If $\frac{x: t \in A}{A \vdash x: t}$ is the last step of the derivation, there are two cases: Either $x \equiv x_0$ or not.

If $x \equiv x_0$ holds, then $e[e_0/x_0] \equiv e_0$. Because of the rule (VAR) it holds $t \equiv t_0$. Hence it holds $A' \vdash e_0 : t_0$ (use the assumption). If $x \not\equiv x_0$, then $e[e_0/x_0] \equiv x$ and it holds $x : t \in A'$. Due to (VAR) it holds $A' \vdash x : t$.

Substitution: Constants
(INT)(INT)If $A \vdash n$: int is the last step, it holds $A' \vdash n$: int.
(BOOL)(BOOL)If $A \vdash b$: boolean is the last step, it holds $A' \vdash b$: boolean.

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Substitution: Addition} \\ \text{(ADD)} \end{array} \end{array} \\ \text{If} \ \begin{array}{l} \begin{array}{l} A \vdash e_1 : \text{int} \quad A \vdash e_2 : \text{int} \end{array} \end{array} is the last step, then the induction} \\ \text{hypothesis yields} \ A' \vdash e_1[e_0/x_0] : \text{int and } A' \vdash e_2[e_0/x_0] : \text{int. Apply rule} \\ \text{(ADD) yields} \ A' \vdash (e_1+e_2)[e_0/x_0] : \text{int.} \end{array} \end{array}$

Substitution: Negation (NOT) If $\frac{A \vdash e_1 : \text{boolean}}{A \vdash !e_1 : \text{boolean}}$ is the last step, the induction hypothesis yields $A' \vdash e_1[e_0/x_0] : \text{boolean}$. Apply rule (NOT) yields $A' \vdash (!e_1)[e_0/x_0] : \text{boolean}$. QED

Theorem: Type Soundness of JAUS

• If $\vdash e : t$, then there exists a value v with $\vdash v : t$ and reduction steps

$$e_0 \longrightarrow e_1, e_1 \longrightarrow e_2, \dots, e_{n-1} \longrightarrow e_n$$

with $e \equiv e_0$ and $e_n \equiv v$.

If e contains variables, then we have to substitute them with suitable values (choose values with same types as the variables).