
Software Engineering
Lecture 17: Types and Type Soundness

Peter Thiemann

University of Freiburg, Germany

08.07.2013

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 1 / 35

Table of Contents

Types and Type Correctness
JAUS: Java-Expressions (Ausdrücke)
Evaluation of Expressions
Type correctness
Result

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 2 / 35

Types and Type Correctness

Types and Type Correctness

I Large software systems: many people involved
I project manager, designer, programmer, tester, . . .

I Essential: divide into components with clear defined interfaces and
specifications

I How to divide the problem?
I How to divide the work?
I How to divide the tests?

I Problems
I Are suitable libraries available?
I Do the components match each other?
I Do the components fulfill their specification?

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 3 / 35

Types and Type Correctness

Requirements

I Programming language/environment has to ensure:
I each component implements its interfaces
I the implementation fulfills the specification
I each component is used correctly

I Main problem: meet the interfaces and specifications
I Minimal interface: management of names

Which operations does the component offer?
I Minimal specification: types

Which types do the arguments and the result of the operations have?
I See interfaces in Java

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 4 / 35

Types and Type Correctness

Questions

I Which kind of security do types provide?

I Which kind of errors can be detected by using types?

I How do we provide type safety?

I How can we formalize type safety?

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 5 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

JAUS: Java-Expressions (Ausdrücke)

Grammar for a subset of Java expressions

x ::= . . . variables
n ::= 0 | 1 | . . . numbers
b ::= true | false truth values
e ::= x | n | b | e+e | !e expressions

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 6 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Correct and Incorrect Expressions

I type correct expressions

boolean flag;
...

0
true
17+4
!flag

I expressions with type errors

int rain since April20;
boolean flag;
...

!rain since April20
flag+1
17+(!false)
!(2+3)

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 7 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Typing Rules

I For each kind of expression a typing rule defines
I if an expression is type correct and
I how to obtain the result type of the expression from the types of the

subexpressions.

I Five kinds of expressions
I Constant numbers have type int.
I Truth values have type boolean.
I The expression e1+e2 has type int, if e1 and e2 have type int.
I The expression !e has type boolean, if e has type boolean.
I A variable x has the type, with which it was declared.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 8 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Formalization of “Type Correct Expressions”

The Language of Types

t ::= int | boolean types

Typing judgment: expression e has type t

` e : t

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 9 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Formalization of “Typing Rules”

I A typing judgment is valid, if it is derivable according to the typing
rules.

I To infer a valid typing judgment J we use a deduction system.

I A deduction system consists of a set of typing judgments and a set of
typing rules.

I A typing rule (inference rule) is a pair (J1 . . . Jn, J0) which consists of
a list of judgments (assumptions, J1 . . . Jn) and a judgment
(conclusion, J0) that is written as

J1 . . . Jn

J0

I If n = 0, a rule (ε, J0) is an axiom.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 10 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Example: Typing Rules for JAUS
I A number n has type int.

(INT)

` n : int

I A truth value has type boolean.

(BOOL)

` b : boolean

I An expression e1+e2 has type int if e1 and e2 have type int.

(ADD)

` e1 : int ` e2 : int

` e1+e2 : int

I An expression !e has type boolean, if e has type boolean.

(NOT)

` e : boolean

` !e : boolean
Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 11 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Derivation Trees and Validity

I A judgment J is valid if a derivation tree for J exists.
I Definition: A derivation tree for the judgment J is either

1. J, if J is an instance of an axiom, or

2.
J1 . . .Jn

J
, if

J1 . . . Jn

J
is an instance of a rule and each Jk is a

derivation tree for Jk .

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 12 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Example: Derivation Trees

I

(INT)

` 0 : int is a derivation tree for judgment ` 0 : int.

I

(BOOL)

` true : boolean is a derivation tree for ` true : boolean.

I The judgment ` 17 + 4 : int holds, because of the derivation tree

(ADD)
(INT)

` 17 : int

(INT)

` 4 : int

` 17 + 4 : int

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 13 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Variable

I Programs declare variables

I Programs use variables according to their declaration

I Declarations are collected in a type environment.

A ::= ∅ | A, x : t type environment

I An open typing judgment contains a type environment: The
expression e has the type t in the type environment A.

A ` e : t

I Typing rule for variables:
A variable has the type, with which it is declared.

(VAR)

x : t ∈ A

A ` x : t

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 14 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Extension of the Remaining Typing Rules

I The typing rules propagate the typing environment.

(INT)

A ` n : int

(BOOL)

A ` b : int

(ADD)

A ` e1 : int A ` e2 : int

A ` e1+e2 : int

(NOT)

A ` !e : boolean

A ` e : boolean

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 15 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Example: Derivation with Variable

The declaration boolean flag; matches the type assumption

A = ∅, flag : boolean

Hence the derivation
flag : boolean ∈ A

A ` flag : boolean

A ` ! flag : boolean

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 16 / 35

Types and Type Correctness JAUS: Java-Expressions (Ausdrücke)

Intermediate Result

I Formal system for
I syntax of expressions and types (CFG, BNF)
I typing judgments
I validity of typing judgments

I Open questions
I How to evaluate expressions?
I Connection between evaluation and typing judgments

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 17 / 35

Types and Type Correctness Evaluation of Expressions

Evaluation of Expressions

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 18 / 35

Types and Type Correctness Evaluation of Expressions

Approach: Syntactic Rewriting

I Define a binary reduction relation e −→ e ′ over expressions

I Expression e reduces in one step to e ′ (Notation: e −→ e ′) if one
computational step leads from e to e ′.

I Example:
I 5+2 −→ 7
I (5+2)+14 −→ 7+14

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 19 / 35

Types and Type Correctness Evaluation of Expressions

Result of Computations

I A value v is a number or a truth value.
I An expression can reach a value after many steps:

I 0 steps: 0
I 1 step: 5+2 −→ 7
I 2 steps: (5+2)+14 −→ 7+14 −→ 21

I but
I !4711
I 1+false
I (1+2)+false −→ 3+false

I These expressions cannot perform a reduction step. They correspond
to run-time errors.

I Observation: these errors are type errors!

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 20 / 35

Types and Type Correctness Evaluation of Expressions

Formalization: Results and Reduction Steps

I A value is a number or a truth value.

v ::= n | b values

I One reduction step
I If the two operands are numbers, we can add the two numbers to

obtain a number as result.

(B-ADD)

dn1e+dn2e −→ dn1 + n2e

dne stands for the syntactic representation of the number n.
I If the operand of a negation is a truth value, the negation can be

performed.

(B-TRUE)

!true −→ false

(B-FALSE)

!false −→ true

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 21 / 35

Types and Type Correctness Evaluation of Expressions

Formalization: Nested Expressions
What happens if the operands of operations are not values? Evaluate the
subexpressions first.

I Negation
(B-NEG)

e −→ e ′

!e −→ !e ′

I Addition, first operand

(B-ADD-L)

e1 −→ e ′1

e1+e2 −→ e ′1+e2

I Addition, second operand (only evaluate the second, if the first is a
value)

(B-ADD-R)

e −→ e ′

v+e −→ v+e ′

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 22 / 35

Types and Type Correctness Evaluation of Expressions

Variable

I An expression that contains variables cannot be evaluated with the
reduction steps.

I Eliminate variables with substitution, i.e., replace each variable with
a value. Then reduction can proceed.

I Applying a substitution [v1/x1, . . . vn/xn] to an expression e, written
as

e[v1/x1, . . . vn/xn]

changes in e each occurrence of xi to the corresponding value vi .
I Example:

I (!flag)[false/flag] ≡ !false
I (m+n)[25/m, 17/n] ≡ 25+17

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 23 / 35

Types and Type Correctness Type correctness

Type Correctness Informally

I Type correctness: If there exists a type for an expression e, then e
evaluates to a value in a finite number of steps.

I In particular, no run-time error happens.

I For the language JAUS the converse also holds (this is not correct in
general, like in full Java).

I Prove in two steps (after Wright and Felleisen)
Assume e has a type, then it holds:

Progress: Either e is a value or there exists a reduction step for e.
Preservation: If e −→ e ′, then e ′ and e have the same type.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 24 / 35

Types and Type Correctness Type correctness

Progress

If ` e : t is derivable, then e is a value or there exists e ′ with e −→ e ′.

Proof
Induction over the derivation tree of J =` e : t.

If

(INT)

` n : int is the final step of J , then e ≡ n is a value (and t ≡ int).

If

(BOOL)

` b : boolean is the last step of J , then e ≡ b is a value (and
t ≡ boolean).

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 25 / 35

Types and Type Correctness Type correctness

Progress: Addition

If

(ADD)

` e1 : int ` e2 : int

` e1+e2 : int
is the final step of J , then it holds that

e ≡ e1+e2 and t ≡ int. Moreover, it is derivable that ` e1 : int and
` e2 : int. The induction hypothesis tells us that e1 is a value or there
exists an e ′1 with e1 −→ e ′1.

I If e1 −→ e ′1 holds, we obtain that e ≡ e1+e2 −→ e ′ ≡ e ′1+e2 cause of
rule (B-ADD-L). This is the desired result.

I In the case e1 ≡ v1 is a value, we concentrate on ` e2 : int. The
induction hypothesis says that e2 is either a value or there exists an e ′2
with e2 −→ e ′2.

I In the second case we can use rule (B-ADD-R) and get:
e ≡ v1+e2 −→ e′ ≡ v1+e′2.

I In the first case (e2 = v1), we can prove easily that v1 ≡ n1 and
v2 ≡ n2 are both numbers. Hence, we can apply the rule (B-ADD)
and obtain the desired e′.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 26 / 35

Types and Type Correctness Type correctness

Progress: Negation

If

(NOT)

` e1 : boolean

` !e1 : boolean
is the last step of J , it holds that e ≡ !e1 and

t ≡ boolean and ` e1 : boolean is derivable.
Using the induction hypothesis (e1 is a value or there exists e ′ with
e −→ e ′) there are two cases.

I In the case that e1 −→ e ′1, we conclude that there exists e ′ with
e −→ e ′ using rule (B-NEG).

I If e1 ≡ v is a value, it’s easy to prove that v is a truth value. Hence,
we can apply the rule (B-TRUE) or (B-FALSE).

QED

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 27 / 35

Types and Type Correctness Type correctness

Preservation

If ` e : t and e −→ e ′, then ` e ′ : t.

Proof
Induction on the derivation e −→ e ′.

If
(B-ADD)

dn1e+dn2e −→ dn1 + n2e
is the reduction step, then it holds that

t ≡ int because of (ADD). We can apply (INT) to e ′ = dn1 + n2e and
obtain the desired result ` dn1 + n2e : int.

If
(B-TRUE)

!true −→ false
is the reduction step it holds that t ≡ boolean

because of (NOT). We can apply (BOOL) to e ′ = false and get the
desired result ` false : boolean.

The case for rule B-FALSE is analoguous.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 28 / 35

Types and Type Correctness Type correctness

Preservation: Addition

If

(B-ADD-L)

e1 −→ e ′1

e1+e2 −→ e ′1+e2
is the occasion for the last step, we obtain through

` e : t that
(ADD)

` e1 : int ` e2 : int

` e1+e2 : int

holds with e ≡ e1+e2 and t ≡ int.
From ` e1 : int and e1 −→ e ′1 it follows by induction that ` e ′1 : int
holds. Another application of (ADD) on ` e ′1 : int and ` e2 : int yields
` e ′1+e2 : int.
The case of rule (B-ADD-R) is analoguous.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 29 / 35

Types and Type Correctness Type correctness

Preservation: Negation

If

(B-NEG)

e1 −→ e ′1

!e1 −→ !e ′1
is the occasion for the last step, we get through ` e : t, that

(NOT)

` e1 : boolean

` !e1 : boolean

holds with e ≡ !e1 and t ≡ boolean.
From ` e1 : boolean and e1 −→ e ′1 we conclude (using induction) that
` e ′1 : boolean holds. Another application of rule (NOT) to
` e ′1 : boolean yields ` !e ′1 : boolean.

QED

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 30 / 35

Types and Type Correctness Type correctness

Elimination of Variables by Substitution

Intention
If x1 : t1, . . . , xn : tn ` e : t and ` vi : ti (for all i), then it holds
` e[v1/x1, . . . , v1/x1] : t.

Assertion
If A′, x0 : t0 ` e : t and A′ ` e0 : t0, then it holds A′ ` e[e0/x0] : t.

Prove
Induction over derivation of A ` e : t with A ≡ A′, x0 : t0.

If

(VAR)

x : t ∈ A

A ` x : t
is the last step of the derivation, there are two cases: Either

x ≡ x0 or not.
If x ≡ x0 holds, then e[e0/x0] ≡ e0. Because of the rule (VAR) it holds
t ≡ t0. Hence it holds A′ ` e0 : t0 (use the assumption).
If x 6≡ x0, then e[e0/x0] ≡ x and it holds x : t ∈ A′. Due to (VAR) it
holds A′ ` x : t.
Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 31 / 35

Types and Type Correctness Type correctness

Substitution: Constants

If

(INT)

A ` n : int is the last step, it holds

(INT)

A′ ` n : int.

If

(BOOL)

A ` b : boolean is the last step, it holds

(BOOL)

A′ ` b : boolean.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 32 / 35

Types and Type Correctness Type correctness

Substitution: Addition

If

(ADD)

A ` e1 : int A ` e2 : int

A ` e1+e2 : int
is the last step, then the induction

hypothesis yields A′ ` e1[e0/x0] : int and A′ ` e2[e0/x0] : int. Apply rule
(ADD) yields A′ ` (e1+e2)[e0/x0] : int.

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 33 / 35

Types and Type Correctness Type correctness

Substitution: Negation

If

(NOT)

A ` e1 : boolean

A ` !e1 : boolean
is the last step, the induction hypothesis yields

A′ ` e1[e0/x0] : boolean. Apply rule (NOT) yields
A′ ` (!e1)[e0/x0] : boolean.

QED

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 34 / 35

Types and Type Correctness Result

Theorem: Type Soundness of JAUS

I If ` e : t, then there exists a value v with ` v : t and reduction steps

e0 −→ e1, e1 −→ e2, . . . , en−1 −→ en

with e ≡ e0 and en ≡ v .

I If e contains variables, then we have to substitute them with suitable
values (choose values with same types as the variables).

Peter Thiemann (Univ. Freiburg) Software Engineering 08.07.2013 35 / 35

	Types and Type Correctness
	JAUS: Java-Expressions (Ausdrücke)
	Evaluation of Expressions
	Type correctness
	Result

