
Lecture 20: Implementation

15.07.2013

() 15.07.2013 1 / 33

Contents

Implementation
Implementation Principles
Example: Eight Queens by Refinement
Transforming Models into Code

() 15.07.2013 2 / 33

Implementation

Implementation

I Input: software architecture, specification of system components

I Artifacts: programs, documentation, test documentation, verification
documentation

I Activities: (programming in the small)
I refinement
I development of algorithms and data structures
I documentation of implementation decisions
I coding
I testing

() 15.07.2013 3 / 33

Implementation Implementation Principles

Implementation Principles

Verbalization

I use meaningful identifiers
bad: help, tmp, var, store

better: averageSales, aspectRatio

I name constants

static final int interest = 0.005;

...

balance += balance * interest;

better than

balance *= 1.005;

I avoid short identifiers (typos!)

I use self-documenting programming language

I include further documentation in programs (e.g., javadoc)

I avoid insignificant comments: i++; // increment i

() 15.07.2013 4 / 33

Implementation Implementation Principles

Powerful programming concepts

I decrease cost of implementation and maintenance

automatic memory management (garbage collection)

I avoids manual allocation and deallocation of memory
I e.g., in Lisp, Smalltalk, Prolog, ML, Haskell, Java, C#,

. . .
I disadvantages: slowdown (little), space usage, lack of

control
I advantages: whole class of nasty errors eliminated

parametric polymorphism

I e.g., in ML, Haskell, J2SE 1.5
I full type safety

I typing errors recognized by compiler
I no casts required

I increased reusability

() 15.07.2013 5 / 33

Implementation Implementation Principles

Example for Generics in Java

// Java 1.4

static void dump(String what, Collection c) {
for (Iterator i = c.iterator(); i.hasNext();) {

String s = (String) i.next();

if (s.indexOf(what) > 0)

System.out.println(s);

}
}

// Java 1.5

static void dump(String what, Collection<String> c) {
for (Iterator<String> i = c.iterator(); i.hasNext();) {

String s = i.next();

if (s.indexOf(what) > 0)

System.out.println(s);

}
}

() 15.07.2013 6 / 33

Implementation Implementation Principles

first-class functions (obsoletes Command pattern)

I e.g., in Lisp, Smalltalk, ML, Haskell, Python,
JavaScript, . . .

I functions as parameters and results
I functions in data structures
I user-defined control structures

() 15.07.2013 7 / 33

Implementation Implementation Principles

Example for user-defined control structure (Haskell)

-- example: divide and conquer

dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> ([b] -> b) -> a -> b

dc isSimple solve partition combine problem = f problem

where

if isSimple problem

then solve problem

else combine (map f (partition problem))

-- applied to quicksort

qsort = dc isSimple solve partition combine

where

isSimple xs = length xs <= 1

solve xs = xs

partition (x0:xs) = [[x | x <- xs, x < x0]

,[x0]

,[x | x <- xs, x >= x0]]

combine xss = concat xss

() 15.07.2013 8 / 33

Implementation Implementation Principles

Principle of Integrated Documentation

Goals:

I simplify orientation and maintenance
I explanation of (algorithm) design decisions
I administrative information (version numbering, authors,

state, known problems)
I specification information (pre-, postconditions,

invariants, complexity)

Ideally: integrated construction of code and documentation

I e.g., javadoc, design by contract
I less overhead
I fewer inconsistencies
I otherwise implementation decisions may get lost

() 15.07.2013 9 / 33

Implementation Implementation Principles

Principle of Stepwise Refinement

I Start in pseudocode style with abstract operators

I Refine operators and data structures simultaneously by
decomposition, implementation, and choice (of data structure)

I Alternative refinements lead to tree structure with leaves
corresponding to solutions

I Methodology formulated by Niklaus Wirth
Program Development by Stepwise Refinement, Communications of the ACM, 14:4, April 1971, pp221-227

I Illustrated by example problem “Eight Queens”

() 15.07.2013 10 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens

Problem statement Given an 8x8 chessboard and 8 queens which are
hostile to each other. Find a position for each queen such
that no queen may be taken by any other queen (i.e., each
row, column, and diagonal contains at most one queen).

I no analytic solution known

⇒ apply “generate and test”

() 15.07.2013 11 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Generate and Test

I A set of candidate solutions

I p predicate for verifying a solution

I solution: x ∈ A ∧ p(x)

do {

Generate the next element of A and call it x

} while(not p(x) and (more elements in A));

if p(x) then x = solution

I Problem: too many candidates | A |= 64!/(56! · 8!) = 232

I Almost 5 days if 100µs per round

() 15.07.2013 12 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Strategy of Preselection

I Decompose p = q ∧ r

I Let Br = {x | x ∈ A ∧ r(x)} such that

I | Br |�| A |
I elements of Br are easily generated
I q is easier to test than p

do {

Generate the next element of B and call it x

} while(not q(x) and (more elements in B));

if q(x) then x = solution

I Suitable r : exactly one queen in each column

I q: at most one queen in each row and diagonal

I | Br |= 88 = 224

I 27 minutes (at 100µs per round)

() 15.07.2013 13 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Stepwise Construction of Trial Solutions

I Find a representation of candidates [x1, x2, . . . , xn] such that

I generating xj from [x1, . . . , xj−1] must be simpler than finding a
complete candidate

I q[x1, x2, . . . , xn]⇒ q[x1, x2, . . . , xj] for all j < n.

j := 1;

do {

trystep (j);

if (successful)

advance

else

regress

} while (j >= 1 && j <= n)

I Criteria satisfied for eight queen problem.

I First solution found after testing 876 configurations.

() 15.07.2013 14 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Top-level Structure

variable board, column, safe;

considerFirstColumn;

do {

tryColumn;

if(safe) {

setQueen;

considerNextColumn;

} else

regress;

} while (not (lastColDone || regressUnderflow))

Abstract operators

I considerFirstColumn: initializes first column

I tryColumn: move down the column until an unthreatened square is found (then set safe

to true) or until all squares have been considered (then set safe to false)

I setQueen: put queen in last inspected square

I considerNextColumn: advance to next column and initialize

I regress: go back to most recent column where the queen can still be moved

() 15.07.2013 15 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Refinement of tryColumn and regress

void tryColumn () {

do {

advancePointer;

testSquare;

} while (not (safe || lastSquare))

}

void regress () {

reconsiderPriorColumn

if (not regressUnderflow) {

removeQueen;

if (lastSquare) {

reconsiderPriorColumn;

if (not regressUnderflow)

removeQueen;

}

}

}

() 15.07.2013 16 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Obvious Data Representation

boolean safe;

int column; // 0 <= column <= 9

int board[]; // new int [9]; 0 <= board[i] <= 8

I considerFirstColumn: board[column = 1] = 0

I considerNextColumn: board[column++] = 0

I reconsiderPriorColumn: column--

I advancePointer: board[column]++

I lastSquare: board[column] == 8

I lastColDone: column > 8

I regressUnderflow: column < 1

To do:

I setQueen (vacuous)

I removeQueen (vacuous)

I testSquare (sets safe; complicated, but most frequently executed)

() 15.07.2013 17 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Clever Data Representation

I Possible refinement step: introduce data structure such that testing for threatened row,
column, and diagonal is in constant time

I Three additional boolean arrays rowFree, mainDiagFree, minorDiagFree

I rowFree[k] iff row k is free; 1 ≤ k ≤ 8
I mainDiagFree[k] iff the main diagonal with coordinate sum k is free;

2 ≤ k ≤ 16
I minorDiagFree[k] iff the minor diagonal with coordinate difference k

is free; −7 ≤ k ≤ 7
I Leads to testSquare defined as

safe = rowFree[board[column]]

&& mainDiagFree[column + board[column]]

&& minorDiagFree[column - board[column]]

I setQueen as (removeQueen is analogous)

rowFree[board[column]] =

mainDiagFree[column + board[column]] =

minorDiagFree[column - board[column]] = false

I board[column] should be factored out

() 15.07.2013 18 / 33

Implementation Example: Eight Queens by Refinement

Eight Queens: Summary

I Final solution obtained by substitution

I Original structure retained by final solution

I At choice points in algorithm design: different assignments to data
structures and abstract operators

I Similar steps lead to a recursive solution

I Resulting program simple to extend to obtain all solutions

I However, there is still some redundancy in the program. . .

() 15.07.2013 19 / 33

Implementation Transforming Models into Code

Transforming Models into Code

() 15.07.2013 20 / 33

Implementation Transforming Models into Code

Transforming Models into Code

I Some models better suited than others:

+ state charts (FSA), decision tables, class diagrams, Z, B, . . .
– sequence diagrams, Petri nets, . . .

I CASE tools support code generation from models (UML, Z, B,. . .)

I rudimentary
I sometimes also:

I round-trip engineering, reverse engineering
I requires program analysis (maintenance!)

I interesting problems

Here:

I Implementation of UML class diagrams

() 15.07.2013 21 / 33

Implementation Transforming Models into Code

Code Generation for Class Diagrams

I Assumption: class diagram refined to implementation/code
perspective

I Class diagrams cover static aspects
I data model
I inheritance
I navigability

I Dynamic aspects underspecified → stubs

I (Directly) expressible in OO PL

I Still grey areas: composition, aggregation, . . .

() 15.07.2013 22 / 33

Implementation Transforming Models into Code

Code for Classes and Interfaces

Person 7→ public class Person {

Person () {}

}

Window 7→ public abstract class Window {}

<<interface>>
Employee

7→ public interface Employee {}

() 15.07.2013 23 / 33

Implementation Transforming Models into Code

Attributes — Minimalist approach

−status : int = 27

+balance : int

BankAccount

Map visibility and generate constructor
public class BankAccount {

private int status = 27;

public int balance;

public BankAccount () {}

public BankAccount (int balance) { this.balance = balance }

}

() 15.07.2013 24 / 33

Implementation Transforming Models into Code

Attributes — Encapsulated approach

−status : int = 27

+balance : int

BankAccount

Hide all attributes, generate getter and setter methods
public class BankAccount {

private int status = 27;

private int balance;

public BankAccount () {}

public BankAccount (int balance) { this.balance = balance; }

public int getBalance () { return this.balance; }

public void setBalance (int balance) { this.balance = balance; }

}

Implementation decisions

I signature of constructor

I access to attributes (JavaBean naming convention: getName, setName)

() 15.07.2013 25 / 33

Implementation Transforming Models into Code

Operations

−status : int = 27

+balance : int

BankAccount

withdraw(amount:int):bool

Generate code stub:
public boolean withdraw (int amount) {

// your code goes here

}

I Sufficient for interface or abstract class

() 15.07.2013 26 / 33

Implementation Transforming Models into Code

Operations/2

−status : int = 27

+balance : int

BankAccount

withdraw(amount:int):bool

if (balance − amount >= 0) {

 balance = balance − amount;

 return true;

} else {

 return false;

}

Copy code from template:
public boolean withdraw (int amount) {

if (balance - amount >= 0) {

balance = balance - amount;

return true;

} else {

return false;

}

}

() 15.07.2013 27 / 33

Implementation Transforming Models into Code

Inheritance

PrivateCustomer

Person

«interface»

Customer

public class Person {...}

public interface Customer {...}

public class PrivateCustomer extends Person implements Customer {

public PrivateCustomer () { super(); } // calls Person

}

I For Java multiple inheritance must be removed

I Are models independent of implementation language?

() 15.07.2013 28 / 33

Implementation Transforming Models into Code

Associations

Simple directed association

1 *

PrivateCustomerSalesRep

Meaning: PrivateCustomer objects can send messages to SalesRep object
Implementation:

I instance variable, here with access functions

I naming: role name, association name, or target class name

public class PrivateCustomer {

private SalesRep salesRep;

public SalesRep getSalesRep() { return salesRep; }

public void setSalesRep (SalesRep salesRep) { this.salesRep = salesRep; }

}

() 15.07.2013 29 / 33

Implementation Transforming Models into Code

Directed, Named Associations

+name3

+name1

−name2

Class1 Class2

I One instance variable per name

I Visibility transferred

public class Class1 {

public Class2 name3;

}

public class Class2 {

public Class1 name1;

private Class1 name2;

}

() 15.07.2013 30 / 33

Implementation Transforming Models into Code

Association with Multiplicity

* 1

accounts owner
BankAccount Customer

Simple approach (Rational Rose): arrays

public class BankAccount {

public Customer owner;

}

public class Customer {

public BankAccount[] accounts;

}

Alternatives: container classes (Collection), RDBMS

() 15.07.2013 31 / 33

Implementation Transforming Models into Code

Refined approach:

* 1

accounts owner
BankAccount Customer

<<Account.java>>

public class Account {

private Customer owner;

public Customer getOwner () {

return owner;

}

public void setOwner (Customer newOwner) {

if (newOwner == owner) return;

if (owner != null) owner.removeAccount(this);

owner = newOwner;

if (owner != null) owner.addAccount(this);

}

}

Public interface: Account.setOwner()

<<Customer.java>>

public class Customer {

private Collection<Account> accounts =

new LinkedList<Account>();

public Collection<Account> getAccounts () {

Collections.unmodifyableCollection(accounts);

}

void removeAccount(Account account) {

accounts.remove(account);

}

void addAccount (Account account) {

accounts.add(account);

}

}

() 15.07.2013 32 / 33

Implementation Transforming Models into Code

Many-to-many Association

* *

Course Student

Implementation depends on navigation requirements

I one-way: collections or arrays

I multi-way (e.g., iteration over pairs (course, student)):
separate structure (cf. DB table)

I no directly suitable Java datastructure

() 15.07.2013 33 / 33

	Implementation
	Implementation Principles
	Example: Eight Queens by Refinement
	Transforming Models into Code

