
Prof. Dr. Peter Thiemann
Sergio Feo-Arenis
Sergiy Bogomolov Summer Term 2014

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

Exercise Sheet 2

Exercise 1 (20 points)

In the lecture, you have seen an approach to formally define requirements by using before-
after predicates as shown below:

enterBuilding(p) ,
PRE

hasAuthorization(p) ∧ p ∈ carriesPassport
THEN

peopleInBuilding := peopleInBuilding ∪ {p} ‖
passportsAtDesk := passportsAtDesk ∪ {p} ‖
carriesPassport := carriesPassport − {p}

END

In this exercise, you need to formalize using this notion the specification of a lift which works
as follows:

1. The lift has a set of buttons inside of the cabin corresponding to each floor. Buttons
in the lift are illuminated if pressed to provide the information about the floors still
to be visited.

2. Each floor has a button to request the lift. Buttons on the floors are illuminated if
pressed.

3. Lift door must be closed when the lift is moving.

4. The building has a number of “secure” floors SECURE accessible by only authorized
personnel. In order to go to a secure floor, a user has to insert an appropriate key into
the lock and press a button with the required floor number afterwards.

Below you find formal specifications of the following operations:

1. request lift(f) - the user requests the lift at floor f .

2. request floor(f) - the user requests to stop the lift at floor f .

3. depart(dir) - the lift can start moving in the direction dir where dir ∈ { up, down}.

4. arrive(f) - the lift must stop at the floor f .

http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

floor ∈ INTEGER
moving ∈ BOOL
door ∈ {open, closed}

request lift(f) ,
PRE

f ∈ FLOORS
THEN

call requests := call requests ∪ {f }
END

request floor(f) ,
PRE

f ∈ FLOORS
THEN

stop requests := stop requests ∪ {f }
END

depart (dir) ,
PRE

dir ∈ {up, down} ∧moving = false ∧ door = open
THEN

moving := true ‖
floor := next(dir ,floor)

END

arrive (f) ,
PRE

f ∈ FLOORS ∧moving = true ∧ req floor(f) ∧ door = closed
THEN

call requests := call requests − {f }
END

Check the formal specification for incompleteness, internal inconsistencies as well as incon-
sistencies with the informal specification. Can you identify situations where the elevator
control gets stuck or where the informal specification is violated? You may also suggest
changes to the informal specification, if it does not make sense.

Hint: There are also invariants on the state of the elevator.

The formal specification relies on the following auxiliary definitions (functions and predi-
cates):

1. key inserted() = true if an appropriate key is in the lock.

2. requests(dir) = true if they are floor requests in the direction dir .

3. next(dir ,floor) is equal to the next floor where the lift has to stop in the direction dir
when going from floor .

4. req floor(floor) = true if the lift needs to stop at floor .

Provide formal definitions for request(dir), next(dir ,floor), and req floor(floor) as functions
or predicates on the state of the elevator control.

. Solution .

MAX FLOOR ∈ INTEGER
FLOORS ∈ 0 . . .MAX FLOOR
floor ∈ FLOORS
moving ∈ BOOL
door ∈ {open, closed}
call requests ∈ set of INTEGER
stop requests ∈ set of INTEGER

INVARIANT : moving = true ⇔ door = closed

request lift(f) ,
PRE

f ∈ FLOORS
THEN

call requests := call requests ∪ {f }
END

request floor(f) ,
PRE

f ∈ FLOORS ∧ (f ∈ SECURE → key inserted())
THEN

stop requests := stop requests ∪ {f }
END

depart (dir) ,
PRE

dir ∈ {up, down} ∧moving = false ∧ door = open ∧ requests(dir)
THEN

door := closed ‖
moving := true ‖
floor := next(dir ,floor)

END

arrive (f) ,
PRE

f ∈ FLOORS ∧moving = true ∧ req floor(f) ∧ door = closed
THEN

moving := false ‖
door := open ‖
call requests := call requests − {f } ‖
stop requests := stop requests − {f }

END

The informal specification can be refined as follows:

1. All requests for the lift from floors must be satisfied eventually.

2. All requests for floors within the lift must be satisfied eventually.

The formal definitions for request(dir), next(dir ,floor), and req floor(floor) as functions or predicates
on the state of the elevator control can be written as follows:

1. req floor(floor) = floor ∈ stop requests ∨ floor ∈ call requests

2. request(dir) = (dir = down → ∃ 0 ≤ f < floor : req floor(f))∧
(dir = up → ∃floor ≤ f < MAX FLOOR : req floor(f))

3. next(dir ,floor) =

 max
0≤f <floor

{f | req floor(f)}, if dir = down

min
floor≤f <MAX FLOOR

{f | req floor(f)}, if dir = up

Submission

• Submit this sheet before the lecture of Thursdays.

• Late submissions will not be accepted.

• Deadline: Thursday 11:59 a.m..

