Software Engineering
Exercise 3

Prof. Dr. Peter Thiemann
Sergio Feo-Arenis Sergiy Bogomolov

Albert-Ludwigs-University Freiburg

=]

[}
o
=)
2
[
[

June 5th, 2014

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014

1/16

Exercise 1: The B Method

EIBURG

INVARIANT clause for the elevator: “if the door is open then the current

floor is among the pending requests.”

INVARIANT
cab : floors &
req <: floors &
door : DSTATE
&

(door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg)

SWT 05.06.2014 2 /16

Exercise 1: The B Method

EIBURG

request (f1) operation: adds the floor fl to the set (not a multiset) of

pending requests. It is allowed for the given floor fl to already be a
pending request.

request (fl) =

PRE
f1 : floors
THEN
req := req \/ {f1}
END
Sergio Feo-Arenis (Uni. Freiburg) SWT

05.06.2014 3/16

Exercise 1: The B Method

EIBURG

move operation: moves the cab to an arbitrary floor that is among the
pending requests. The current floor must not be a pending request, and
the door must be closed.

move =
PRE
req /= {} &
cab /: req &
door = closed
THEN
cab :: req
END

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 4 /16

Exercise 1: The B Method &

toggle operation: Opens the door if it is closed, and closes it otherwise™"
The cab door must be toggled only if the cab’s current floor is a pending

request. If the operation closes the door, the request is removed from the
set of pending requests.

toggle =
PRE
cab : req
THEN
IF
door = closed
THEN
door := open
ELSE
req := req - {cab} |
door := closed
END
FND
Sergio Feo-Arenis (Uni. Freiburg) SWT

05.06.2014 5/16

Exercise 1: The B Method

EIBURG

Consistency: for each operation PRE P THEN S END, show:
I&P=>[S]I.

using the weakest precondition.

For the Elevator machine, we have:

I = cab : floors & req <: floors & door : DSTATE
& (door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 6 /16

Exercise 1: The B Method

EIBURG

Consistency: for each operation PRE P THEN S END, show:
I&P=>[S]I.

using the weakest precondition.

For the Elevator machine, we have:

I = cab : floors & req <: floors & door : DSTATE
& (door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 7 /16

Exercise 1: The B Method

EIBURG

The request (f1) operation is consistent:

cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req) & fl : floors =>

[req := req \/ {f1}] I

<=> (wp)

cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req) & f1 : floors =>

cab : floors & req \/ fl <: floors & door : DSTATE
& (door = open => cab : req \/ f1l)

<=> (set theory, predicate logic)

true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 8 /16

Exercise 1: The B Method

EIBURG

The move operation is consistent:

cab : floors & req <: floors & door : DSTATE
& (door = open => cab : req)

& req /= {} & cab /: req & door = closed =>
[cab :: req] I

<=> (wp)

cab : floors & req <: floors & door : DSTATE
& (door = open => cab : req)

& req /= {} & cab /: req & door = closed =>
cab : req =>

cab : floors & req <: floors & door : DSTATE
& (door = open => cab : req)

<=> (predicate logic)

true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 9 /16

Exercise 1: The B Method

The toggle operation is consistent:

I & cab : req =>

[IF door = closed THEN door:= open

ELSE req := req - {cab} || door := closed]I
<=> (wp)

I & cab : req=>

(door = closed) & [door:=open]I

or (not door=closed & [req:=req-{cab} || door

Sergio Feo-Arenis (Uni. Freiburg) SWT

:=closed]I)

05.06.2014

EIBURG

10/ 16

Exercise 1: The B Method

EIBURG

<=> (wp)
I & cab : req=>

(door = closed) & cab : floors & req <: floors

& open : DSTATE & (open = open => cab : req)

or (not door=closed & cab : floors & req-{cab} <: floors
& closed : DSTATE & (closed = open => cab : req-{cab}))
<=> (predicate logic)

I & cab : req=>

(door = closed) & cab : floors & req <: floors

& (true => cab : req)

or (not door=closed & cab : floors & req-{cab} <: floors
& (false => cab : req-{cab}))

<=> (set theory, predicate logic)

<=>
true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 11 /16

Exercise 1: The B Method

EIBURG

ProB Demo

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 12 /16

Exercise 2: B Types 2

SANER A .

NAT : P(N)

POW(1) : not well-typed, POW(S) requires S to be set
{1} * {{1}, NAT}: P(N) x P(PP(N))

1:2: not well-typed, E : S requires S to be a set

card({{{}, {1, {}}, {21}
not well-typed, {Ej ...} requires VE; : A

{x | x =1 or x = TRUE} : not well-typed, implies that x : N U B
which is not allowed.

{1 n{{1}}:

not well-typed, SN T requires S and T to be of the same set type

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 13 /16

Exercise 3: O0OA &

Classes:

» Event

v

Users: Organizer, Participant, etc
Ticket

Purchase

v

v

> Area
Payment Method

v

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 14 / 16

Exercise 3: O0OA &

2
of
User Account Registration
ID + user
purchases +huyer o is registered + event
1|- address 1 *[- role
- ticket
+ create()
+ register() 1|+ change_role()
& entitles to ha!s *
Purchase
Ticket Event
- ID 1
- date consists of | - event belongs to =D
- buyer 1‘ 1 x|- area * q|- dateStart
- paymentMethod - price - dateEnd
+ confirm() - validityRange |1 - description
+ cancel() 1
is valid for
has
uses 1 A
Area
PaymentMethod
- capacity
- description - ticketPrice

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 15 / 16

Exercise 3: OOA &

Display areas, prices,
availability

request ticket:

confirm reserved ticket:

|
heck out: t »
display payment options: :
'
enter payment details + >

|
| -<'update availabilit
I

onfirm booking- T
| |
| |

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 16 / 16

