
Software Engineering
Exercise 3

Prof. Dr. Peter Thiemann
Sergio Feo-Arenis Sergiy Bogomolov

Albert-Ludwigs-University Freiburg

June 5th, 2014

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 1 / 16

Exercise 1: The B Method

INVARIANT clause for the elevator: “if the door is open then the current
floor is among the pending requests.”

INVARIANT

cab : floors &

req <: floors &

door : DSTATE

&

(door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 2 / 16

Exercise 1: The B Method

request(fl) operation: adds the floor fl to the set (not a multiset) of
pending requests. It is allowed for the given floor fl to already be a
pending request.

request (fl) =

PRE

fl : floors

THEN

req := req \/ {fl}

END

;

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 3 / 16

Exercise 1: The B Method

move operation: moves the cab to an arbitrary floor that is among the
pending requests. The current floor must not be a pending request, and
the door must be closed.

move =

PRE

req /= {} &

cab /: req &

door = closed

THEN

cab :: req

END

;

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 4 / 16

Exercise 1: The B Method

toggle operation: Opens the door if it is closed, and closes it otherwise.
The cab door must be toggled only if the cab’s current floor is a pending
request. If the operation closes the door, the request is removed from the
set of pending requests.

toggle =

PRE

cab : req

THEN

IF

door = closed

THEN

door := open

ELSE

req := req - {cab} ||

door := closed

END

END
Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 5 / 16

Exercise 1: The B Method

Consistency: for each operation PRE P THEN S END, show:

I & P => [S]I.

using the weakest precondition.

For the Elevator machine, we have:

I ≡ cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 6 / 16

Exercise 1: The B Method

Consistency: for each operation PRE P THEN S END, show:

I & P => [S]I.

using the weakest precondition.

For the Elevator machine, we have:

I ≡ cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 7 / 16

Exercise 1: The B Method

The request(fl) operation is consistent:

cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req) & fl : floors =>

[req := req \/ {fl}] I

<=> (wp)
cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req) & fl : floors =>

cab : floors & req \/ fl <: floors & door : DSTATE

& (door = open => cab : req \/ fl)

<=> (set theory, predicate logic)
true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 8 / 16

Exercise 1: The B Method

The move operation is consistent:

cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req)

& req /= {} & cab /: req & door = closed =>

[cab :: req] I

<=> (wp)
cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req)

& req /= {} & cab /: req & door = closed =>

cab : req =>

cab : floors & req <: floors & door : DSTATE

& (door = open => cab : req)

<=> (predicate logic)
true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 9 / 16

Exercise 1: The B Method

The toggle operation is consistent:

I & cab : req =>

[IF door = closed THEN door:= open

ELSE req := req - {cab} || door := closed]I

<=> (wp)
I & cab : req =>

(door = closed) & [door:=open]I

or (not door=closed & [req:=req-{cab} || door:=closed]I)

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 10 / 16

Exercise 1: The B Method

<=> (wp)
I & cab : req =>

(door = closed) & cab : floors & req <: floors

& open : DSTATE & (open = open => cab : req)

or (not door=closed & cab : floors & req-{cab} <: floors

& closed : DSTATE & (closed = open => cab : req-{cab}))

<=> (predicate logic)
I & cab : req =>

(door = closed) & cab : floors & req <: floors

& (true => cab : req)

or (not door=closed & cab : floors & req-{cab} <: floors

& (false => cab : req-{cab}))

<=> (set theory, predicate logic)
. . .
<=>

true

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 11 / 16

Exercise 1: The B Method

ProB Demo

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 12 / 16

Exercise 2: B Types

1. NAT : P(N)

2. POW(1) : not well-typed, POW(S) requires S to be set

3. {1} * {{1}, NAT} : P(N)× P(P(N))

4. 1:2 : not well-typed, E : S requires S to be a set

5. card({{{}, {1, {}}, {2}}}) :
not well-typed, {E1 . . . } requires ∀Ei : A

6. {x | x = 1 or x = TRUE} : not well-typed, implies that x : N ∪ B
which is not allowed.

7. {1} ∩ {{1}} :
not well-typed, S ∩ T requires S and T to be of the same set type

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 13 / 16

Exercise 3: OOA

Classes:

I Event

I Users: Organizer, Participant, etc

I Ticket

I Purchase

I Area

I Payment Method

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 14 / 16

Exercise 3: OOA

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 15 / 16

Exercise 3: OOA

User
User

Account

login()

confirm login

select event

Event

Display areas, prices,
availability

Area

request ticket

loop

confirm reserved ticket

Check out

Purchase

display payment options

enter payment details

confirm booking

update availability

Sergio Feo-Arenis (Uni. Freiburg) SWT 05.06.2014 16 / 16

