Prof. Dr. Peter Thiemann
Sergio Feo-Arenis
Sergiy Bogomolov Summer Term 2014

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

Exercise Sheet 7

Exercise 1: Battleships (10 Points)

Consider the game battleships: http://en.wikipedia.org/wiki/Battleship_(game). A
software engineer is commisioned to write a program that validates a ship configuration
according to the rules. A configuration is valid if and only if:

1. Tt contains exactly ten ships:

e One aircraft carrier (5 squares)
e Two cruisers (4 squares)
e Three destroyers (3 squares)

e Four submarines (2 squares)

2. The ships are not placed adjacent to each other (there is at least one square free
between any two ships).

3. The ships are straight, have no corners or indentations.
4. The ships cannot be placed diagonally.

The code should implement the following interface:

public enum GridState {Invalid, Valid, Viable}
public interface BattleshipValidator {
// returns: Valid if the grid contains a valid configuration ,
// Viable if the configuration does not violate the rules but does
// mnot yet contain all ships, Invalid otherwise.
public GridState validate(boolean [][] grid);

// adds a ship of the specified size to a grid at position (x,y)

// with the specified orientation. Returns true if placing the ship

// respects the rules.

public boolean addShip(boolean [][] grid, int shipSize, int x, int y,
bool isHorizontal);

e Provide a specification (in the form of requires and ensures clauses) for each of the
interface methods. Try to be as formal and precise as possible.

http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/
http://en.wikipedia.org/wiki/Battleship_(game)

For method validate:

e Requires:

— grid is not null
— The dimensions of grid are square (e.g. 10x10)
e Ensures: (we consider the grid as a graph, where each cell with value true is a node and there
are implicit edges to all (up to 8) neighbors)
— result is Viable iff:
every connected component has dimensions X X 1or1 x X and2< X <5
the number of connected components of size 2 is smaller or equal to 4
the number of connected components of size 3 is smaller or equal to 3

the number of connected components of size 4 is smaller or equal to 2
the number of connected components of size 5 is smaller or equal to 1

EE G R S I

the total number of connected components N is less than 10
— result is Valid iff:

every connected component has dimensions X X 1or1 x X and2< X <5
the number of connected components of size 2 is smaller or equal to 4

the number of connected components of size 4 is smaller or equal to 2

*
*
* the number of connected components of size 3 is smaller or equal to 3
*
* the number of connected components of size 5 is smaller or equal to 1
*

the total number of connected components N is exactly 10

— result is Invalid otherwise.

For method addShip:

e Requires:

— grid is not null

The dimensions of grid n x m are square (e.g. 10x10), i.e. n =m.
2 < shipSize <5
—0<x<nand0<y<n

e Ensures:

— grid is updated so that all cells between position (x,y) and
* when isHorizontal is true, (x + shipSize,y)
* when isHorizontal is false, (x,y + shipSize)
contain the value true
— result is true iff:

x all cells in grid between position (x,y) and
- when isHorizontal is true, (x + shipSize,y)
- when isHorizontal is false, (x,y + shipSize)
contained the value false on entry.
* when isHorizontal is true, x + shipSize < n
* when isHorizontal is false, y + shipSize < n
* isValid(grid) after updating returns Valid or Viable

— result is false otherwise.

Exercise 2: Roman numerals (10 Points)

Consider code that converts between arabic and roman numerals:

public interface RomanNumeralConverter {
// returns the arabic numeral representation of the input string
// or —1 if invalid
public int toArabic(String roman);

// returns a string with the roman numeral representation of the
// input number, the input number should be positive and

// no greater than 3000

public String toRoman(int arabic);

e Provide test cases according to the black box testing principle for both interface meth-
ods.

e How many test cases are necessary for each method?

.. Solution ..o
In both cases, the number of tests necessary depend on the technique used: error guessing, boundary
value analysis, equivalence partitioning, etc.

For method toArabic: We use for example error guessing, thus we create test cases for:

e corner cases
e random “easy” inputs
e (almost) all inputs that are considered “difficult”

For this method, one would expect the difficult cases to be those where subtraction is required to obtain
the value of a numeral, e.g. “CM” — 900. Additionally, the method should recognize all probable
symbol inversions, e.g. “ID” or “VM" as invalid.

Input Expected Output
“" (empty string) -1
" 1
‘1" 2
“11" 3
“Ir -1
“Iv 4
“VX" -1
“ID" -1
“vD" -1
“1C” -1
“VC" -1
“DC" -1
“CI” 101
-1

For method toRoman: We can consider the classical implementation of the conversion to derive test
cases.

private static final int[] VALUES = { 1000, 900, 500, 400, 100,
90, 50, 40, 10, 9, 5, 4, 1 }s

private static final String[] SYMBOLS = { "™M", "C™m', "D", "CD", "C", "
(ORI D (D S D G VA A VAL I

public static String arabicToRoman(int arabic) {
StringBuilder result = new StringBuilder();

int remaining = arabic;
for (int i = 0; i < VALUES.length; i++) {
remaining = appendRomanNumerals(remaining , VALUES[i], SYMBOLS[i],
result);
}
return result.toString();
}
private static int appendRomanNumerals(int arabic, int value, String
romanDigits, StringBuilder builder) {
int result = arabic;

while (result >= value) {
builder.append(romanDigits);
result —= value;

}

return result;

}

From here, we test the use of every element in the table individually:

Input Expected Output

1 “7
4 “IVv”
5 V"
9 “IX"
10 X"
40 “XL"
50 UL
90 “Xc"
100 “cr
400 “CD"
500 “D"
900 “CmMm”
1000 “M"

We also consider corner cases
Input Expected Output

0 “" (empty string)
3000 "MMM”
3001 “" (empty string)

Finally, some combinations can be tested

Input Expected Output

94 “XCIV”
301 “ccarr
499 “CDXCIX"
944 “"CMXLIV”

2949 “MMCMXLIX"

Submission
e Submit this sheet before the lecture of Thursdays.
e Late submissions will not be accepted.

e Deadline: Thursday 11:59 a.m.

