Prof. Dr. Peter Thiemann
Sergio Feo-Arenis
Sergiy Bogomolov Summer Term 2014

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

Exercise Sheet 8

Exercise 1: DART (15 Points)
Recall the DARTE]E] technique from the lecture and consider the following program:

int maxOf3(int x, int y, int z) {
int m;
if (x> vy)
if (x> z)
m = x;
else
m= z;
else if (y > z)

m = X;
return m;

}

i. Apply DART on method max0f3.

Compute a set of tuples of input values (x,y, z) that covers all paths of max0£3. Each
tuple (x,y,z) is a test case which covers one path of max0f3. Provide the concrete
execution, the symbolic execution and the path constraints.

ii. Additionally generate test cases to ensure all possible combinations of relationships
between z, y and z are covered. le, z <y,z =y, x>y, y< 2,y =2,y > 2,...

iii. For each generated test case, determine your expected return value of max0£f3 (i.e. the
test oracle is you). Is method max0£3 faulty? If so, name the test case generated in
that reveals the bug, if possible.

iv. Which kind of coverage is achieved by DART. what is your opinion of coverage criteria,
in general? Is it guaranteed for DART to reveal the bug in this particular example?
Justify your answer.

v. Consider extending DART to programs with loops and function calls. which problems
do you expect? How would you deal with impure functions that return different results
for the same parameters (for example, a random number function or a function returning
the current time)?

1Paper: http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
2Talk: http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-pldi2005.pdf

http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-pldi2005.pdf

.. Solution

i. Test cases: consider the path constraints as annotated in the code:

i |int maxOf3(int x, int y, int z) {
2 int m;
3 if (x> vy)
1 if (X>Z)
m=x; // z>yAz>z
6 else
7 m=1z; // x>yAz<z
8 else if (y > z)
9 m=y; // 2<yAy>z
10 else
B m=x; // z<yAy<z (should be m= z)
12 return m;

13 }

We generate test cases that satisfy those constraints:

Line \ Test Case \ Exp. Value \ Concrete Execution

\ Symbolic Execution

5 (2,1,1) 2 2>1,2>1,m=2 T>Yx>Zm=c

7 (2,1, 2) 2 2>1,-2>2,m=2 T>y, T >z,m=z
9 (1,2, 1) 2 -1>22>1,m=2 x> Y,y >z,m=y
11 (1,1,1) 1 -1>1,-1>1,m=1 T > Y,y > 2Z,m=2a

ii. The method max0£3 is faulty, line 11 should be m = z;.
bug. The test case (1, 2, 3) would have revealed the fault.

Unfortunately, no test case revealed the

iii. It is not guaranteed to find bugs using DART, test cases can be generated that satisfy the path
constraints and produce the expected result.
Complete path coverage does not guarantee finding all bugs in general. Every path can be executed
with many different variable valuations.

iv. In general, for DART one has to limit the number of paths to a finite number. Possible enhancements
include:

Loops In case of loops, one could use path coverage (acyclic) rather than full path coverage
(including cycles). Furthermore, one could also set a fixed maximum number of loop unrollings
to consider.

Non-deterministic function calls Random values based on previous runs could be assumed
for non-deterministic function calls. Limit attempts for DART to achieve full coverage to a
finite number of runs (it can take infinitely many runs for DART to come up with a new (so
far uncovered) path).

Exercise 2: Random Testing (5 Points)

Consider a (black box) function “boolean leapYear(int year)” that returns true iff the year
input is a leap yealﬂ

e How would you set up random testing for this function?

e Assuming that the function’s implementation just contains a single return statement
without function calls, give a minimum set of test cases to validate this implementation.

Shttp://en.wikipedia.org/wiki/Leap_year

http://en.wikipedia.org/wiki/Leap_year

..................................... Solution ...

e A possible test environment for the function would be:

import java.util.Random;
import java.util.GregorianCalendar;
import static org.junit.Assert.assertEquals;

public class TestlLeapYear {
// perform n random tests
void testLeapYear(int n) {
Random rand = new Random();
// create a new calendar
GregorianCalendar cal =
(GregorianCalendar) GregorianCalendar.getlnstance();
for (int i=0; i<n; i++) {

int x = rand.nextlnt();
int result = leapYear(x);
assertEquals(result, cal.isLeapYear(x));
}
}
Q@Test

public void doRandomTesting() {
testLeapYear(1000);
}

}

Here, we assume a reference implementation that serves the purpose of test oracle.

Consider the following implementation:

boolean leapYear(int year){
return (year % 100 = 0) ? (year % 400 = 0) : (year % 4 = 0);
}

It is equivalent to the implementation

boolean leapYear(int year){
if (year % 100 = 0)
if (year % 400 = 0)
return true; // year is divisible by 100 and 400
else
return false; // year is divisible by 100 but not by 400
else if (year % 4 = 0)
return true; // year is not divisible by 100 but by 4
else
return false; // year is not divisible by 100 and not divisible
by 4

}

Now one can readily extract path conditions to generate test cases that achieve complete path
coverage:

Line Test Case Expected result

4 400 true
6 300 false
8 104 true

10 1001 false

Submission
e Submit this sheet before the lecture of Thursdays.
e Late submissions will not be accepted.

e Deadline: Thursday 11:59 a.m.

