
Exercise Sheet 10



Exercise 1.1: Effects of statements

statement read write

int a, b, sum, product; - a, b, sum, product
sum = 0; - sum

product = 1; - product
a = read(); - a
b = read(); - b

while (a <= b) a, b -
sum += a; sum, a sum

product *= a; product, a product
a++; a a

write(sum); sum -
write(product); product -



Exercise 1.2: Control-Flow-Graph

void main()

{

int a, b, sum, product;

sum = 0;

product = 1;

a = read();

b = read();

while (a <= b)

{

sum += a;

product *= a;

a++;

}

write(sum);

write(product);

}

Entry: main

int a, b, sum, product;

sum = 0;

product = 1;

a = read();

b = read();

while (a <= b)

sum += a; write(sum);

product *= a;

a++;

write(product);

Exit



Exercise 1.3: Control Dependencies

Entry: main

int a, b, sum, product;

sum = 0;

product = 1;

a = read();

b = read();

while (a <= b)

sum += a;write(sum);

product *= a;

a++;

write(product);

Exit



Exercise 1.4: Data Dependencies

Entry: main

int a, b, sum, product;

sum = 0;

product = 1;

a = read();

b = read();

while (a <= b)

sum += a;

write(sum);

product *= a;

a++;

write(product);

Exit



Exercise 2: Fixing defects

The ddmin algorithm will return the string “z”. The reason is the
wrong initialization of the array cnt. In particular, its length should
we equal to the number of letters in the English alphabet, i.e., the
appropriate size would be 26 elements, whereas the program
allocates memory only for 25 elements and thus no memory is
allocated to count the number of occurances of the letter “z”.

We can locate this defect by first looking at the line 19
(cnt[s.charAt(i)a]++;) where the exception is thrown. This
line is data dependent on the line 13 (int[] cnt = new

int[25];). Now we observe that the array cnt is first declared
there and thus the defect originates at this line of code.


	Exercise Sheet 10

