
Prof. Dr. Peter Thiemann
Sergio Feo-Arenis
Sergiy Bogomolov Summer Term 2014

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

Exercise Sheet 10

Exercise 1: Tracking Dependencies (10 Points)

Consider the following program. The function read() reads a number from the console and
returns it. The function write() writes a number to the console.

1 void main ()
2 {
3 i n t a , b , sum , product ;
4 sum = 0 ;
5 product = 1 ;
6 a = read () ;
7 b = read () ;
8 whi le (a <= b)
9 {

10 sum += a ;
11 product ∗= a ;
12 a++;
13 }
14 wr i t e (sum) ;
15 wr i t e (product) ;
16 }

Exercise 1.1: Effects of statements

Name for each statement in the above program the set of variables which are read and the
set of variables which are written by the statement.

Exercise 1.2: Control-Flow-Graph

In a Control Flow Graph, nodes represent program locations and are labelled with state-
ments. Edges are used to represent jumps. There is an edge from statement A to B iff there
is an execution of the program where B executes directly after A.

Draw the Control Flow Graph of the above program. Use a dedicated entry node labelled
‘Entry: main’ and a dedicated exit node labelled ‘Exit’.

Exercise 1.3: Control Dependencies

Based on the Control-Flow-Graph from Exercise 1.2 compute the control dependencies and
visualize them with a graph. It should have the same set of nodes as the CFG whereas
the edges are defined as follows: There is an edge from node A to node B iff B is control-
dependent on A.

http://proglang.informatik.uni-freiburg.de/teaching/swt/2014/

Exercise 1.4: Data Dependencies

Based on the Control-Flow-Graph from Exercise 1.2 compute the data dependencies and
visualize them with a graph. It should have the same set of nodes as the CFG whereas the
edges are defined as follows: There is an edge from node A to node B iff B is data-dependent
on A.

Exercise 2: Fixing Defects (10 Points)

Look at the program below which takes a string and counts a number of occurancies of every
English letter in it. The program throws an exception on input “the quick brown fox jumped
over the lazy dog’s tail”. Apply ddmin to find a minimal input for which the program also
throws an exception. Then apply the algorithm to locate defects and fix the defect.

1 import java . u t i l . Scanner ;
2

3 pub l i c c l a s s s t r i n gAna l y s i s {
4

5 pub l i c s t a t i c void main (S t r ing [] a rgs) {
6 St r ing s = new St r ing () ;
7 Scanner input = new Scanner (System . in) ;
8 i n t i ;
9

10 System . out . p r i n t l n (‘ ‘ Enter a s t r i n g : ’ ’) ;
11 s = input . nextLine () ;
12

13 i n t [] cnt = new in t [2 5] ;
14

15 s = s . toLowerCase () ;
16

17 f o r (i = 0 ; i < s . l ength () ; i++)
18 i f (Character . i s L e t t e r (s . charAt (i)))
19 cnt [s . charAt (i) − ’ a ’]++;
20

21 f o r (i = 0 ; i < cnt . l ength ; i++)
22 i f (cnt [i] != 0)
23 System . out . p r i n t l n (‘ ‘ cnt [‘ ‘+(char) (’ a ’+i) + ‘ ‘]= ‘ ‘+ cnt [i]) ;
24 }
25 }

