
Software Engineering
Lecture 01: Introduction

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 17

Introduction

Introduction

Software Engineering

I Programming in the large (DeRemer, Kron, 1975)

I Principles, models, and techniques for development and maintenance

I Emphasis on engineering techniques
I Goals:

I meeting the requirements (functionality, quality, efficiency, etc)
I delivering on time
I reducing the cost of development and maintenance (often 80 %)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 17

Introduction

Software Crisis

I Coined 1965, NATO meetings 1968/69

I Programs hard to maintain

I Documentation absent or obsolete

I Overrunning cost and deadlines

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 17

Introduction

Characteristics of Software

“Software is soft”

I Immaterial
I no wear and tear
I no physical limitations
I hard to measure

I Changeability: easy or hard?

I Aging

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 17

Introduction

Software Development Today

I Hardware not an issue in the days of Moore’s law
I Cost for development and maintenance more important than efficiency

cost of software ↗, cost of hardware ↘
I More complex systems

I Teamwork essential (→ decomposition, interfaces, contracts)

I Diverging classes of applications

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 17

Introduction

Two Extreme Types of Applications

Applications with short time-to-market

Base functionality more important than correctness or robustness
→ accelerated “agile” design process

Safety critical applications

Correctness essential for functionality
→ (semi-) formal methods, verification

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 17

Introduction

Software Crisis Today . . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 17

Introduction

Bugs can stop you: USS Yorktown (CG-48)
In September 1997, a crew member of the cruiser USS Yorktown
mistakenly entered a zero for a data value, which resulted in a division by
zero. The error cascaded, crashed every computer (WinNT 4.0), and
eventually shut down the ship’s propulsion system. The ship was dead in
the water for 2 hours 45 minutes.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 17

Introduction

Context

Smart Ship Project (1996)

I 27 terminals w/ Dual Pentium Pro 200MHz processors running
WinNT 4.0

I Connected by fibre-optical network

I Ship can be controlled from every terminal

I Purpose of system: supervision of ship including propulsion

Motivation

I Cut down personnel (10% out of 400)

I Cut down cost (by 2.8 Mio USD)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 17

Introduction

Context

Smart Ship Project (1996)

I 27 terminals w/ Dual Pentium Pro 200MHz processors running
WinNT 4.0

I Connected by fibre-optical network

I Ship can be controlled from every terminal

I Purpose of system: supervision of ship including propulsion

Motivation

I Cut down personnel (10% out of 400)

I Cut down cost (by 2.8 Mio USD)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

How did it happen?

I Software reports “gauge open”, but the gauge is closed

I To fix: officer performs direct modifications of the ship’s database

I A particular entry was changed to “0”

I Caused a division by zero elsewhere in the system

I Caused buffer overflow and overwrote propulsion data

I Bingo!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 17

Introduction

Bugs can be fatal

In September 1993 an A320 skidded off the end of the runway during
landing. The aircraft touched down with sink rate low enough that the
onboard flight computers did not consider it to be “landing”, which
inhibited thrust reverse and brake application for nine seconds.

The failure was caused by two preconditions for braking (weight on both
wheels, wheels spinning). They were introduced because of an earlier
accident (Lauda Air) where reverse thrust was applied during normal
flight, wrongly assuming the plane was about to land.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 17

Introduction

Bugs can be expensive:
The Ariane 5 Failure on June 4, 1996

I The first launch of the Ariane 5 rocket was an expensive failure

I Video: https://www.youtube.com/watch?v=gp_D8r-2hwk

I Video explanation:
https://www.youtube.com/watch?v=W3YJeoYgozw

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 17

https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=W3YJeoYgozw

Introduction

Sometimes a bug is more than a nuisance
James Gleick http://www.around.com/ariane.html

It took the European Space Agency 10 years and $7 billion to produce
Ariane 5, a giant rocket capable of hurling a pair of three-ton satellites
into orbit with each launch and intended to give Europe overwhelming
supremacy in the commercial space business. All it took to explode that
rocket less than a minute into its maiden voyage last June, scattering fiery
rubble across the mangrove swamps of French Guiana, was a small
computer program trying to stuff a 64-bit number into a 16-bit space.
[. . .] At 39 seconds after launch, as the rocket reached an altitude of two
and a half miles, a self-destruct mechanism finished off Ariane 5, along
with its payload of four expensive and uninsured scientific satellites.
Self-destruction was triggered automatically because aerodynamic forces
were ripping the boosters from the rocket.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 17

http://www.around.com/ariane.html

Introduction

Conclusion?

Recurring themes

I Unclear requirements

I Buggy specification

I Oversights in testing

I Unforeseen (human) interaction with the system

I Not in the examples: time pressure, stakeholder pressure, financial
pressure

Software Engineering

I Supposed to provide cure for all that

I And more . . .

I Mission Impossible?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 17

Introduction

Conclusion?

Recurring themes

I Unclear requirements

I Buggy specification

I Oversights in testing

I Unforeseen (human) interaction with the system

I Not in the examples: time pressure, stakeholder pressure, financial
pressure

Software Engineering

I Supposed to provide cure for all that

I And more . . .

I Mission Impossible?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 17

Introduction

State of Affairs

I No consensus on “what is software engineering”

I No simple (or single) answer
(“No silver bullet”, Fred Brooks, 1987)
http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

I But there are techniques, methods, and tools, that can reduce the
complexity of constructing systems

I There are also techniques for building specific kinds of systems with
high degrees of reliability

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 17

http://www.cs.nott.ac.uk/~cah/G51ISS/Documents/NoSilverBullet.html

Introduction

Approach

I It is not possible to present and practice the full spectrum of
approaches to software engineering in one class

I industrial setting is completely different from a university
I insufficient time for development in the large
I insufficient experience with software development
I different problems demand different techniques

⇒ We survey central concepts and experiment with selected approaches

⇒ Emphasis on techniques for safety critical systems

I Specialized techniques presented in advanced courses

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 17

Introduction

Curriculum

1. Introduction
I Activities in SW development
I Software development processes

2. Requirements & Specification
I Use cases, use case diagrams (UML), user stories
I Overview of the B specification method
I Design by contract, code contracts, monitoring, verification
I Types, invariants, (type state, session types)

3. Design
I UML: Data modeling, behavioral modeling, OCL
I SW Architecture, patterns
I MDE basics, meta modeling

4. Construction (Implementation)
I Code generation for classes and relations
I Debugging

5. Testing
I Unit tests, random testing, DART
I Test generation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 17

	Introduction

