
Software Engineering
Lecture 02: Processes

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 37



Processes

Terms

Software I Organized collection of computer data and instructions

Component I Solves isolated task
I Developed by a single person

SW System I Multiple components
I Developed by a team

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 37



Processes

Programming in the Small

I Development of a system comprised of a small number of
“mind-sized” components

I Requirements often clear

I Sometimes algorithmic aspects
I Procedure for a single component:

I Procedural decomposition, top-down
I “stepwise refinement” (N. Wirth),

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 37



Processes

Programming in the Large

I Development of a software system comprised of many components

I Requirements at first fuzzy
I Size or complexity dictate . . .

I decomposition in a large number of components
I development in a team
I size determines duration, but beware of Brook’s law!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 37



Processes

Brook’s law: Adding manpower to a late SW project makes it later

Image: http://bulldozer00.files.wordpress.com/2010/11/productivity-and-capability.png?w=595

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 37

http://bulldozer00.files.wordpress.com/2010/11/productivity-and-capability.png?w=595


Processes

Issues Arising with Programming in the Large

I Requirements need to be investigated
I Communication problem customer ↔ developer
I Understanding the problem

I Design of the system is significant task
I Decomposition in components (interfaces, contracts)
I Information hiding (D.L. Parnas)
I Design for maintenance

I Long life span
I High probability of changes (aging)

I Promising approach: object-oriented analysis and design

I Construction of components: programming in the small

I Testing required on many levels

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 37



Processes

Conclusion

I Programming in the large is a structured approach to all activities in
the development of a software system

I Unfortunately, . . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 37



Processes

Conclusion

I Programming in the large is a structured approach to all activities in
the development of a software system

I Unfortunately, . . .
I there are many overall approaches (process models)
I there are many techniques with similar goals

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 37



Processes

Process Models

I Process Model: structured network of activities and artifacts

I An activity transforms a set of artifacts into new artifacts

Methods

Guidelines

Conventions

Check Lists

Patterns

Tools

Artifacts

Given

Employee Y Role X

Changed or

new Artifacts

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 37



Processes

Phases

I Phases provide structure of process model
I Description of a phase

I goals
I activities
I roles
I required/new artifacts
I patterns, guidelines, and conventions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 37



Processes

Desiderata for Process Models

I The fewer phases, artifacts, roles, the better

I Artifacts should cover standard case

I Tool support

I Quality assurance for each artifact

I Traceability

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 37



Processes

The Classic: Waterfall Model

Requirements

Design

Specification

Coding

Testing
Integration

Operation
Maintenance

I Early error correction is cheaper
(e.g. after analysis phase 100 times
cheaper than after deployment)

I Hence, after every phase:
check of previous phases

I Potentially return to previous phase

I Phases may overlap

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 37



Processes

Requirements Analysis

tractability

cost analysis

result:
decision on continuation of project

documents: (artifacts)

I Requirement specification (Lastenheft)
I Cost estimation
I Project plan

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 37



Processes

Definition / Specification

starting point:
vague, incomplete, inconsistent requirements

result:
complete, consistent, unequivocal, accomplishable
requirements

documents:
I System specification (Pflichtenheft)
I Product model (e.g. OOA)
I GUI model
I User manual

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 37



Processes

Definition / Specification (cont’d)

I Only external behavior of system
I Analysis of requirements

I functional / non-functional requirements
I prioritization

I Main outcome: system specification
I fixes the scope of the product
I serves as basis for contract between customer and contractor
I basis for final acceptance
I I functionality

I user interface
I interfaces to other systems
I performance (response time, space usage)
I required hard and software
I guidelines for documentation
I time scheduling
I quality

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 37



Processes

Design

starting point: system specification / product model

I Decomposition in components / subsystems
I Logical interfaces of each component
I Choice of technologies

result: Software architecture (with specification of components)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 37



Processes

Implementation and Testing

starting point: Software architecture

I Coding of component specifications
I Compilation to machine language
I Unit testing up to component level

result: implemented components and testing protocols

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 37



Processes

Integration, system test, and deployment

I Integration
I stepwise addition of single components
I tested with data fixed in advance

(functional requirements only)

I System test
I entire system (incl. hardware)
I non-functional requirements (performance, GUI)

I Deployment
I transfer of software system to its working environment

result: deployed product, protocol of final acceptance

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 37



Processes

Maintenance

I Supervision

I Bug fixes

I Changes due to changes in requirements (incl. extensions)

result: maintained product

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 37



Processes

Concrete Process Models

1. V-Model

2. Prototyping model

3. Phased models (evolutionary, incremental, spiral)

4. Unified Software Process

5. Agile development techniques

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 37



Processes

V-Model “Entwicklungsstandard für Systeme des Bundes”

Test

and 

Integrate

requirements
system 

software
requirements

preliminary
design

detailed
design

code and
debug

unit

test

component
test

integration
software

test
acceptancele

v
el

 o
f 

ab
st

ra
ct

io
n

time

Analyze

and

Design

system
integration

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 37



Processes

V-Model

I Builds on waterfall model

I Emphasizes validation connections between late phases and early
phases

I Objectives
I risk minimization
I quality assurance
I cost reduction
I communication between stakeholders

I Current instance: V-Model XT

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 37



Processes

Prototyping Model
Lifecycle

require−
prototype

design
ments

build
prototype

test
prototype

document
requirements codedesign test integrate

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 37



Processes

Prototyping - Overview

Advantages:

I understanding the
requirements for the user
interface

I improves understanding
between developer and client

I early testing of feasibility,
usefulness, performance, etc.

Problems:

I customers treat the
prototype as the product

I a prototype is not a
specification

I significant user involvement

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 37



Processes

Phased Models

Evolutionary Development

1. model core requirements

2. design and implement

3. deploy

4. feedback from customer

5. revise/extend requirements

6. revise/extend design

7. revise/extend implementation

8. iterate from 3 until all
requirements met

Incremental Development

1. model all requirements

2. design and implement
only core requirements

3. deploy

4. feedback from customer

5. revise requirements

6. design further requirements

7. implement further requirements

8. iterate from 3 until all
requirements met

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 37



Processes

Incremental Development

(each iteration adds more functionality)

integratedesign code test O&M

integratedesign code test O&M

integratedesign code test O&M

integratedesign code test O&M

release 4

release 3

release 2

release 1

re
q

u
ir

em
en

ts

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 37



Processes

Evolutionary Development

(each iteration incorporates new requirements)

integratedesign code test O&Mreqts.

integratedesign code test O&Mreqts.

integratedesign code test O&Mreqts.

lessons learned

lessons learned

version 1

version 2

version 3

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 37



Processes

Comments on Phased Models

I Incremental development

I avoids ’big bang’ implementation
I but assumes all requirements known up-front

I Evolutionary development

I allows for lessons from each version to be incorporated into the next
I but: hard to plan for versions beyond the first;

lessons may be learned too late

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 37



Processes

The Unified Software Process

Use-Case Driven

I Which user-visible processes are implemented by the system?
I Analysis, design, implementation, and testing driven by

use-cases

Architecture centric

I Architecture developed in parallel to use cases (mutual
dependency)

Iterative and Incremental

I eliminate risks first
I checkpoint after each iteration
I on failure of an iteration step, only current extension needs to

be reconsidered
I small steps speed up project
I easy stepwise identification of the requirements

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 37



Processes

Structure of the Unified Software Process

I sequence of cycles

I after each cycle: product release with code, manuals, product models,
and test cases

...

Cycles (each completing a new version)

Start End

Zeit

I cycle consists of 4 phases:
Inception, Elaboration, Construction, Transition

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 37



Processes

Main-Workflows and Phases

... ... ... ... ... ...

Core

Workflows

Analysis

Design

Testing

Elaboration Transition

Phases

It. #1 It. #2 It. #n

Requirements

Implementation

Inception Construction

I each phase ends with a mile stone

I each phase processes all workflows (with varying intensity)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 37



Processes

Inception Phase

I functionality of system from users’ perspective
most important use cases (stakeholder needs)

I preliminary sketch of suitable architecture

I project plan and cost

I identify most important risks (with priorities)

I plan elaboration phase

I GOAL: rough vision of the product

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 37



Processes

Elaboration Phase

I specify (most) use cases in detail

I design initial architecture

I implement most important use cases

I plan activities and resources for remaining project

I consider risks

I GOAL: prototype (proof-of-concept for architecture)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 37



Processes

Construction Phase

I implement system

I high resource needs

I small architectural changes

I GOAL: system ready for customer (small errors acceptable)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 37



Processes

Transition Phase

I deliver beta-version to customer

I address problems (immediately or in next release)

I train customer

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 37



Processes

Agile Development Techniques
Extreme Programming (XP, Kent Beck 1999)

I frequent releases

I short development cycles

I pair programming

I unit testing w tests developed before the code

I features (requirements) exemplified by tests

I features implemented when needed

I features implemented serve as progress marks

I ahead-of-time design deemphasized

I stakeholder involvement

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 37



Processes

Agile Development Techniques
Scrum (Hirotaka Takeuchi and Ikujiro Nonaka 1986)

I Flexible approach to development in a self-organizing team

I Incremental process

I Requirements organized in a product backlog
I Development structured into Sprints (2-4 weeks of intense

development)
I Sprint backlog: requirements chosen for a sprint (frozen)
I Burndown chart: progress meter

I Communication structure: sprint planning, daily standup meetings,
sprint review

I Team structure: Product owner, Scrum master, Team (Stakeholders,
Managers)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 36 / 37



Processes

Summary

I Software has unique problems with far-reaching consequences

I Creating software systems requires structured process models

I Classic process phases: waterfall model

I Commonly used process models: V-model, prototyping, evolutionary,
incremental, unified SW process, agile development

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 37 / 37


	Processes

