
Software Engineering
Lecture 03: From Requirements to Definition

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 48

Requirements Engineering

comprises methods, means of description, and tools to discover, analyze,
and formulate requirements of software systems

I requirements analysis (Systemanalyse)

I requirements specification (Produktdefinition)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 48

Requirements

I Functional requirements
I inputs and their constraints
I functions of the system
I outputs (reactions)

I Nonfunctional requirements
I run time
I memory
I standards

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 48

Requirements

I Requirements on realization
I software / hardware
I devices
I interfaces
I facilities (OS, computers, . . .)
I documentation

I Requirements on testing, installation, support
I Requirements on construction of the system

I approach
I resources (personal, cost, deadlines)
I rules, standards

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 48

Systematic Investigation of Functional Requirements

I Inside-out methods
modeling starts from product internals
(rarely applicable for new products)

I Outside-in methods
modeling starts from environment of product

I actors and use cases (use case diagram, UML)
I interfaces and data flows (context diagram, SA/SD)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 48

Requirements Engineering: Four Activities

Elicit

Manage

Guide

Analyze

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 48

Use Cases and Use Case Diagrams
Jacobson, UML

Actor

I participates directly in a process
I stands for a role

I natural person
I unit of organization
I external system

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 48

Use Cases

Use case
Create Account

Definition I a sequence of actions
I performed by one actor
I to achieve a particular goal

two forms:

I graphical (UML diagram)
I textual (with templates)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 48

Example Use Case Diagram

Source: http://www.agilemodeling.com/images/models/useCaseDiagram.jpg

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 48

Generalization

I generalization

I concrete and abstract use cases

I concrete and abstract actors

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 48

Use Case Textual Template

Use case: name

Goal: achieved by successful execution

Category: primary, secondary, optional

Precondition:

Postcondition/success:

Postcondition/failure:

Actors:

Trigger:

Description: numbered tasks

Extensions: wrt previous tasks

Alternatives: wrt tasks

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 48

Use Case Guidelines

I Outside view — System as black box

I No implementation specifics

I No UI specifics

I Primarily text

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 48

Tools

I http://www.umlet.com/

UML diagram drawing — standalone and in Eclipse

I http://yuml.me/

online drawing of use case and class diagrams (UML)

I http://www.gliffy.com/flowchart-software/

flowcharts and DFD

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 48

http://www.umlet.com/
http://yuml.me/
http://www.gliffy.com/flowchart-software/

Related Approaches

User Stories
A user story is a very high-level definition of a requirement, containing just
enough information so that the developers can produce a reasonable
estimate of the effort to implement it.
[Scott Ambler http://www.agilemodeling.com/artifacts/userStory.htm]

I Very slim, very high-level, often just one sentence.

I Informal, but proposed formal style [Mike Cohn]:
As a (role) I want (something) so that (benefit).

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 48

http://www.agilemodeling.com/artifacts/userStory.htm

Example User Stories

I Students can purchase monthly parking passes online.

I Parking passes can be paid via credit cards.

I Professors can input student marks.

I Students can obtain their current seminar schedule.

I Students can order official transcripts.

I Students can only enroll in seminars for which they have prerequisites.

I As a student I want to purchase a monthly parking pass so that I can
drive to school.

I As a student I want to obtain my current seminar schedule so that I
can follow my classes.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 48

User Stories Guidelines

I Authors

I Tools

I Size

I Priority

I Traceability

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 48

Related Approaches

Usage Scenarios

A usage scenario, or scenario for short, describes a real-world example of
how one or more people or organizations interact with a system. They
describe the steps, events, and/or actions which occur during the
interaction. Usage scenarios can be very detailed, indicating exactly how
someone works with the user interface, or reasonably high-level describing
the critical business actions but not the indicating how they are performed.
[Scott Ambler http://www.agilemodeling.com/artifacts/usageScenario.htm]

I Further elaboration of a use case.

I Scenario ∼ path through a use case.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 48

http://www.agilemodeling.com/artifacts/usageScenario.htm

Example High-Level Scenario
Scenario: ATM banking for the week

1. Sally Jones places her bank card into the ATM.

2. Sally successfully logs into the ATM using her personal identification
number.

3. Sally deposits her weekly paycheck of $350 into her savings account.

4. Sally pays her phone bill of $75, her electricity bill of $145, her cable
bill of $55, and her water bill of $85 from her savings account.

5. Sally attempts to withdraw $100 from her savings account for the
weekend but discovers that she has insufficient funds.

6. Sally withdraws $40 and gets her card back.
Source: agilemodeling.com

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 48

Example Detailed Scenario
Scenario: A successful withdrawal attempt at an automated teller machine (ATM)

1. John Smith presses the ’Withdraw Funds’ button

2. The ATM displays the preset withdrawal amounts ($20, $40, . . .)

3. John chooses the option to specify the amount of the withdrawal

4. The ATM displays an input field for the withdrawal amount

5. John indicates that he wishes to withdraw $50 dollars

6. The ATM displays a list of John’s accounts, a checking and two savings accounts

7. John chooses his checking account

8. The ATM verifies that the amount may be withdrawn from his account

9. The ATM verifies that there is at least $50 available to be disbursed from the
machine

10. The ATM debits John’s account by $50

11. The ATM dispenses $50 in cash

12. The ATM displays the ’Do you wish to print a receipt’ options

13. John indicates ’Yes’

14. The ATM prints the receipt

Source: agilemodeling.com

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 48

Perspective on Changing Requirements

I Produce high quality requirements (see checklist in CC2)

I Advertize the cost of requirements changes

I Establish a change-control procedure

I Anticipate changes

I Consider the business value of requirements

I Cancel a project with bad or frequently changing requirements

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 48

General Approach to Formal Requirements Analysis

Ideas - System
Natural

Language
Document

Formal
Document

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 48

The Analysis Problem

I Soundness, completeness?

I Consistent ↔ contradictory?

I Degree of abstraction?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 48

Formal Methods for Analysis
What are Formal Methods?

I Formal = Mathematical

I Methods = Structured Approaches

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 48

Useful Mathematics for Requirements

I Set theory

I Functions and relations

I First-order predicate logic

I Before-after predicates

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 48

Set Theory

All dogs are male or female

Dogs = Male ∪ Female

No dog is male and female at once

Male ∩ Female = ∅

Male Female

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 48

Functions and Relations

Every customer must have a personal assistant

attendants : Customers → Employees

Every customer has a set of accounts

accountsOf : Customers → P(Accounts)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 48

First-Order Predicate Logic

Everybody who works on a Sunday must have a permit

∀ p∈Employees. workOnSunday(p) ⇒ hasPermit(p)

Every customer must have at least one account

∀ c∈Customers. ∃ a∈Accounts. a∈accountsOf(c)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 48

Before-After Predicates
People who enter the building must carry their ID. When
entering, they have to leave their ID at the registration desk.

INVARIANT peopleInBuilding ∩ carriesPassport = ∅

enterBuilding(p) ,
PRE

hasAuthorization(p) ∧
p ∈ carriesPassport

THEN
peopleInBuilding := peopleInBuilding ∪ { p } ‖
passportsAtDesk := passportsAtDesk ∪ { p } ‖
carriesPassport := carriesPassport − { p }

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 48

Advantanges of Using Mathematics

I Short notation

I Forces precision

I Identifies ambiguity

I Clean form of communication

I Makes you ask the right questions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 48

Mathematical Notation is Concise

For every ticket that is issued, there has to be a single person
that is allowed to enter. This person is called the owner of the
ticket.

vs.

ticketOwner : IssuedTickets → Persons

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 48

Mathematical Notation Enforces Precision

On red traffic lights, people normally stop their cars.

I What is the meaning of normally?

I Is it possible to build a system on this statement?

I What happens when people do not stop their cars?

No basis for formalization.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 48

Mathematical Notation Avoids Ambiguity

When the temperature is too high, the ventilation has to be
switched on or the maintenance staff has to be informed.

Is it ok to switch on ventilation and inform the maintenance staff?

temperatureHigh ⇒ informStaff or ventilationOn

or

temperatureHigh ⇒ informStaff xor ventilationOn

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 48

Mathematical Communication

I Mathematical notation has precise semantics

I New concepts can be defined in terms of old ones

I Mathematical notation is international: no language skills required

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 48

Completeness

Every customer is either billed or prepaid.

∀ c∈Customers. billed(c) xor prepaid(c)

For a purchase through the internet, a person is automatically
registered as a new customer.

internetPurchase(c) , Customers := Customers ∪ { c }

Is the new customer billed or prepaid?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 48

Remarks

Modeling is not Programming

I Programming is constructive

I Programming describes a solution

Modeling is not Design

I Description of the entire system

I No description of the software

I No distinction between software and environment

I Incremental approach

I Goal: understanding the system

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 48

Different Notations

Starting Point: Formal Document

I Transform to natural language

I Transform to graphical notation

Objectives for Choosing a (Graphical) Notation

I Well-defined semantics?

I Is it helpful? Does it make things clearer?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 36 / 48

Graphical Notation
Sets and Subset / Classes and Subclasses

Dogs

Male Female

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 37 / 48

Graphical Notation
Function f : A → B

f

A B

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 38 / 48

Example Problem

The system should control the temperature of the room. It can
read the current temperature from a thermometer. If the
temperature falls below a lower limit, then the heater should be
switched on to raise the temperature. If it rises above an upper
limit, then the air condition system should be switched on to
lower the temperature.

Safety condition

The heater and the air condition should never be switched on at
the same time.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 39 / 48

Specification

roomTemperature ∈ INTEGER
lowerLimit ∈ INTEGER
upperLimit ∈ INTEGER

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 40 / 48

Specification (cont)

airCondition ∈ { on, off }
heater ∈ { on, off }

(airCondition = on) ⇒ (heater = off)
(heater = on) ⇒ (airCondition = off)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 41 / 48

Specification (cont)
Turn on AC

startCooling ,
PRE

airCondition = off ∧
roomTemperature > upperLimit

THEN
airCondition := on

END

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 42 / 48

Tools

I Pretty printer, Editor

I Syntax checker

I Type checker

I Execizers

I Model checkers

I Interactive provers

I Automatic provers

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 43 / 48

Languages
The Z Notation

I Developed in the late 1970 at Oxford

I ISO Standard since 2002 (ISO/IEC 13568:2002)

I Support of large user community

I Large number of tools available

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 44 / 48

Languages
The B Method

I Simplified version of Z

I Goal: Provability

I Introduction of Refinement

I Industrial strength proof tools

I Methodological Approach

I Can also be used for Design and Implementation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 45 / 48

Languages
Other Languages

I . . . numerous!

I Most tools come with their own language

I Nearly all based on same underlying concepts

I Main difference: syntax. . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 46 / 48

ProB

I ProB is an animator and model checker for the B-Method

I Fully automatic animation of many B specifications

I Systematically checks a specification for a range of errors

I Supports model finding, deadlock checking and test-case generation

I Further languages supported: Event-B, CSP-M, TLA+, and Z.

I Developed by Michael Leuschel (Uni Düsseldorf)
http://www.stups.uni-duesseldorf.de/ProB/index.php5/

Main_Page

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 47 / 48

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page

Summary
Requirements Engineering Using Formal Methods

I Advantanges
I Clear and precise notation
I Makes you understand you problem
I Discoveres contradictions
I Helps you to merge requirements
I Makes you ask the right questions

I Disadvantages
I Notation requires some skills to master
I Only suitable for functional requirements

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 48 / 48

