Software Engineering Lecture 04: The B Specification Method

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 1 / 54

The B specification method

- B-Method: formal approach to specification and development of software systems
- Developed by Jean-Raymond Abrial, late 1980es
- Definitive reference: The B-Book, Cambridge University Press
- Supports all phases of software development
- Emphasis on simplicity
- Amenable to formal verification
- ► Tool support: Atelier-B, B-Toolkit
- Industrial use
- Syntax http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 2 / 54

イロト 不得下 イヨト イヨト 二日

Abstract Machines

Abstract Machines

Peter Thiemann (Univ. Freiburg)

Software Engineering

■ ● ■ つへで SWT 3 / 54

・ロト ・四ト ・ヨト ・ヨト

Abstract Machines

Central concept: Abstract Machine

Example: The Ticket Dispenser

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 4 / 54

```
Ticket Dispenser in B
Abstract Machine Notation (AMN)
```

```
MACHINE Ticket
VARIABLES serve, next
INVARIANT serve : NAT & next : NAT & serve <= next
INITIALISATION serve, next := 0, 0
OPERATIONS
  ss <-- serve_next =
    PRE serve < next
    THEN ss, serve := serve + 1, serve + 1
    END ;
  tt <-- take ticket =
    PRE
       true
    THEN tt, next := next, next + 1
```

END

END

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

MACHINE, VARIABLES, INVARIANT

MACHINE name

uniquely names a machine in a project

VARIABLES name, ...

- components of local machine state space
- all distinct names

INVARIANT formula

Conjunction of

- type of each variable, e.g., serve : NAT
- relations between variables, e.g., serve <= next</p>

Peter Thiemann (Univ. Freiburg)

SWT 6 / 54

OPERATIONS

List of operation definitions

```
output, ... <-- name (input, ...) =

PRE precondition

THEN statement

END
```

- name: name of operation
- input, outputs: names of input and output parameters
- PRE precondition
 - Formula that must be true to invoke
 - May be dropped if true
- ▶ THEN *statement*: *body* of the operation
 - Must specify each output variable
 - May update the machine state

Statement / Assignment

Simple Assignment

name := expression

Multiple Assignment

name, ... := expression, ...

- all distinct names on left hand side
- simultaneous assignment evaluate all right hand sides, then assign to left hand sides all at once

Peter Thiemann (Univ. Freiburg)

SWT 8 / 54

Abstract Machines

INITIALISATION

INITIALISATION statement

- defines a set of possible initial states
- all variables of the machine state must be assigned

Peter Thiemann (Univ. Freiburg)

(日) (同) (日) (日) (日)

Sets and Logic

Sets and Logic

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 10 / 54

イロト イ部ト イヨト イヨト 三日

Sets

- B builds on typed set theory
- Standard mathematical notation for set operations is ok, but we use the syntax of the tools
- Predefined sets:
 - ▶ BOOL = { TRUE, FALSE }
 - ▶ INT, NAT, NAT1 machine integers and natural numbers (without 0)
 - STRING with elements of the form "string content"
- Types of variables are defined by predicates
 - v:S the value of v is an element of set S
 - $v \le S$ the value of v is a subset of set S

Peter Thiemann (Univ. Freiburg)

SWT 11 / 54

イロト 不得下 イヨト イヨト 二日

Set Formation

SETS declaration; ...

- another MACHINE clause
- declaration can be
 - set-name: set with unspecified elements
 - set-name = { element-name, ...}: set with named elements
- example

```
SETS COLOR = {red, green, blue}; KEY; PERSON
```

SWT 12 / 54

Set Expressions (Part I) Excerpt

If S and T are sets, then so are ...

{}, {E}, {E, ...} empty set, singleton set, set enumeration
{x | P} comprehension (set of all x such that P holds)
S\/T, S/\T, S-T set union, set intersection, set difference
S*T Cartesian product
(set of all pairs (s,t) where s:S and t:T)
POW(S), POW1(S) power set, set of non-empty subsets
union(S) generalised union over sets of sets
inter(S) generalised intersection over sets of sets

SWT 13 / 54

イロト 不得下 イヨト イヨト 二日

Sets and Logic

Set Expressions (Part II) Excerpt

Properties of sets

E:S, E/:S	element of, not element of
S<:T, S/<:T	subset of, not subset of
S<<:T, S/<<:T	strict subset of, not strict subset of
card(S)	cardinality

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 14 / 54

イロト イ部ト イヨト イヨト 三日

Types for Set Expressions

- Every type in B is a set, but not vice versa
- Types ensure consistency and the absence of paradoxa
- Types are generated by the grammar

 $A, B ::= \mathbb{N} \mid \mathbb{M} \mid A \times B \mid \mathbb{P}(A) \mid \text{Prop}$

- M is an abstract set defined in a SETS clause
- PROP is the type of propositions (outcomes of predicates)
- Write E :: A to indicate that set expression E has type A

Peter Thiemann (Univ. Freiburg)

SWT 15 / 54

イロト 不得下 イヨト イヨト 二日

Sets and Logic

Rules for Typed Set Expressions (Part I)

$$1 :: \mathbb{N} \quad \text{NAT} :: \mathbb{P}(\mathbb{N}) \quad \frac{\text{SETS } \mathbb{M} \dots}{\mathbb{M} :: \mathbb{P}(\mathbb{M})} \quad \frac{\text{SETS } \mathbb{M} = \{x_1, \dots, x_n\}}{x_i :: \mathbb{M}}$$
$$\{\} :: \mathbb{P}(A) \quad \frac{E_i :: A}{\{E_1, \dots\} :: \mathbb{P}(A)} \quad \frac{[x :: A] \ P :: \operatorname{Prop}}{\{x \mid P\} :: \mathbb{P}(A)}$$
$$\frac{E :: A \quad S :: \mathbb{P}(A)}{E : S :: \operatorname{Prop}} \quad \frac{S :: \mathbb{P}(A)}{S <: T :: \operatorname{Prop}} \quad \frac{S :: \mathbb{P}(A)}{\operatorname{card}(S) :: \mathbb{N}}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 16 / 54

イロト イ部ト イヨト イヨト 三日

Sets and Logic

Rules for Typed Set Expressions (Part II)

$$\begin{array}{c} S :: \mathbb{P}(A) & T :: \mathbb{P}(A) \\ \hline S \cup T :: \mathbb{P}(A) & S \cap T :: \mathbb{P}(A) & S \setminus T :: \mathbb{P}(A) \\ \hline S :: \mathbb{P}(A) & T :: \mathbb{P}(B) \\ \hline S * T :: \mathbb{P}(A \times B) & \hline POW(S) :: \mathbb{P}(\mathbb{P}(A)) & \hline S :: \mathbb{P}(A) \\ \hline OW1(S) :: \mathbb{P}(\mathbb{P}(A)) \\ \hline \hline union(S) :: \mathbb{P}(A) & inter(S) :: \mathbb{P}(A) \end{array}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 17 / 54

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Examples

- $\{1, 2, 3\} :: \mathbb{P}(\mathbb{N})$ because $1, 2, 3 :: \mathbb{N}$
- ► {1,2, {}} not well typed because 1, 2 :: N but {} :: P(A)
- ▶ 1:{}

well typed expression because $\{\}::\mathbb{P}(\mathbb{N})\ /\ wrong\ proposition$

- ▶ NAT \cup {} :: $\mathbb{P}(\mathbb{N})$
- ▶ NAT \cup M not well typed because NAT :: $\mathbb{P}(\mathbb{N})$ but M :: $\mathbb{P}(M)$
- NAT $\cup S * T$ not well typed
- $union(POW(\{1,2,3\})) :: \mathbb{P}(\mathbb{N})$

Peter Thiemann (Univ. Freiburg)

SWT 18 / 54

First-Order Predicate Logic

- ► Atoms are expressions of type PROP
- Standard connectives

P & Q	conjunction
P or Q	disjunction
P => Q	implication
P <=> Q	equivalence
not P	negation
!(x).(P => Q)	universal quantification
#(x).(P & Q)	existential quantification

- \blacktriangleright In quantification, predicate P must fix the type of x
- Example

!(m).(m:NAT => #(n).(n:NAT & m < n))

Peter Thiemann (Univ. Freiburg)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weakest Preconditions

Peter Thiemann (Univ. Freiburg)

Software Engineering

≣▶ ≣ ∽৭ SWT 20/54

・ロト ・四ト ・ヨト ・ヨト

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation = relation on state space
- Questions
 - 1. Is an operation executable?
 - 2. Does an operation preserve the invariant?

イロト 不得 トイヨト イヨト

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation = relation on state space
- Questions
 - 1. Is an operation executable?
 - 2. Does an operation preserve the invariant?
- ► Formalized for operation PRE P THEN S END
 - 1. Executable: I & P
 - 2. Preservation: if executable, does I hold after S?

イロト イポト イヨト イヨト

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation = relation on state space
- Questions
 - 1. Is an operation executable?
 - 2. Does an operation preserve the invariant?
- ▶ Formalized for operation PRE *P* THEN *S* END
 - 1. Executable: I & P
 - 2. Preservation: if executable, does I hold after S?
- ► Tool: Weakest Precondition (WP) [S] Q (a predicate)
 - If [S] Q holds before executing S, then Q holds afterwards
 - For all R that hold before S and guarantee that Q holds afterwards, R => [S] Q

イロト 不得下 イヨト イヨト 二日

- State space of a B machine = type of its variables restricted by invariant I
- Specification of operation = relation on state space
- Questions
 - 1. Is an operation executable?
 - 2. Does an operation preserve the invariant?
- ► Formalized for operation PRE P THEN S END
 - 1. Executable: I & P
 - 2. Preservation: if executable, does I hold after S?
- ► Tool: Weakest Precondition (WP) [S] Q (a predicate)
 - If [S] Q holds before executing S, then Q holds afterwards
 - For all R that hold before S and guarantee that Q holds afterwards, R => [S] Q
- WP can be calculated for each statement of the AMN

Peter Thiemann (Univ. Freiburg)

SWT 21 / 54

イロト イポト イヨト イヨト 二日

Example

VARIABLES x, y
INVARIANT x:{0,1,2} & y:{0,1,2}
OPERATIONS
f =
 y := max { 0, y - x }
END

Weakest precondition

Peter Thiemann (Univ. Freiburg)

SWT 22 / 54

Calculation of the Weakest Precondition WP for Assignment

$$[x := E]P = P[E/x]$$

Example

Peter Thiemann (Univ. Freiburg)

≣▶ ≣ ∽へ⊙ SWT 23/54

<ロ> (日) (日) (日) (日) (日)

Calculation of the Weakest Precondition WP for skip

[skip] P = P

The skip statement has no effect on the state.

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 24 / 54

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Calculation of the Weakest Precondition

WP for conditional

- Syntax: IF E THEN S ELSE T END for statements S and T
- Weakest precondition

[IF E THEN S ELSE T END]P = (E&[S]P) or ((not E)&[T]P)

Example

```
[IF x<5 THEN x := x+4 ELSE x := x-3 END] (x < 7)
<=>
    (x < 5) & [x := x+4] (x < 7)
    or not (x < 5) & [x := x-3] (x < 7)
<=>
        (x < 5) & (x+4 < 7)
    or (x >= 5) & (x-3 < 7)
<=>
        (x < 3)
    or (x >= 5) & (x < 10)
</pre>
```

Peter Thiemann (Univ. Freiburg)

SWT 25 / 54

Machine Consistency

Machine Consistency

Peter Thiemann (Univ. Freiburg)

Software Engineering

≣ ► ≣ ৩৭৫ SWT 26/54

イロン イ理ト イヨト イヨト

Machine Consistency

INVARIANT and INITIALISATION

Objectives

- 1. The state space must not be empty
- 2. Initialization must be successful

INVARIANT I

State space is non-empty if #(v). (1)

INITIALISATION T

Success if [T] I

イロト 不得下 イヨト イヨト 二日

INVARIANT and INITIALISATION

Objectives

- 1. The state space must not be empty
- 2. Initialization must be successful

INVARIANT *I* State space is non-empty if #(v).(*I*)

INITIALISATION T

Success if [T] I

Example: Ticket Dispenser

- 1. For serve = 0 and next = 0, serve <= next holds
- 2. [serve, next := 0, 0] I = 0:NAT & 0:NAT & 0 <= 0

Peter Thiemann (Univ. Freiburg)

イロト イポト イヨト イヨト 二日

Machine Consistency

Proof Obligation for Operations

Consider

- ► INVARIANT *I*
- ▶ operation PRE *P* THEN *S* END

Consistent if

 $I \& P \Rightarrow [S]I$

イロト 不得下 イヨト イヨト 二日

Machine Consistency

Proof Obligation for Operations

Consider

- INVARIANT I
- ▶ operation PRE *P* THEN *S* END

Consistent if

 $I \& P \Rightarrow [S]I$

Example: Ticket Dispenser serve_next

```
(serve:NAT & next:NAT & serve <= next) & (serve < next) =>
[serve := serve + 1] (serve:NAT & next:NAT & serve <= next)
<=>
(serve:NAT & next:NAT & serve < next) =>
(serve:NAT & next:NAT & serve + 1 <= next)</pre>
```

Peter Thiemann (Univ. Freiburg)

SWT 28 / 54

Relations

Relations

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 29 / 54

◆□> ◆圖> ◆理> ◆理> 二理

Printer Permissions

```
MACHINE Access
SETS USER; PRINTER; OPTION; PERMISSION = { ok, noaccess }
CONSTANTS options
PROPERTIES
  options : PRINTER <-> OPTION &
  dom( options ) = PRINTER & ran( options ) = OPTION
VARTABLES access
INVARIANT access : USER <-> PRINTER
INITIALISATION access := {}
OPERATIONS
  add (uu, pp) =
    PRE uu:USER & pp:PRINTER
    THEN access := access // \{ uu | -> pp \}
   END :
  . . .
                                        ▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで
```

SWT 30 / 54

New Machine Clauses

CONSTANTS name, ...

- name is a fixed, but unknown value
- Type determined by PROPERTIES

PROPERTIES formula

- Describes conditions that must hold for SETS and CONSTANTS
- Must specify the types of the constants
- Must not refer to VARIABLES

About clauses

- Clauses must appear in the same order as in the example!
- No forward references allowed

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 31 / 54

(日) (周) (三) (三)

Relational Operations

- Binary relation between S and T S <-> T = POW (S*T)
- Elements of a relation R : S <-> T are pairs, written as uu |-> pp, where uu:S & pp:T
- Predefined symbols for domain and range of a relation dom (R) = {s | s:S & #(t).(t:T & s |-> t :R) } ran (R) = {t | t:S & #(s).(s:S & s |-> t :R) }

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Relational Operations

- Binary relation between S and T S <-> T = POW (S*T)
- Elements of a relation R : S <-> T are pairs, written as uu |-> pp, where uu:S & pp:T
- Predefined symbols for domain and range of a relation dom (R) = {s | s:S & #(t).(t:T & s |-> t :R) } ran (R) = {t | t:S & #(s).(s:S & s |-> t :R) }
- Example: PRINTER = {PL, PLDUPLEX, PLCOLOR} options = { PL |-> ok, PLCOLOR |-> noaccess } dom (options) = {PL, PLCOLOR} ran (options) = {ok, noaccess}

Peter Thiemann (Univ. Freiburg)

SWT 32 / 54

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Relations

Printer Permissions (Cont'd)

```
MACHINE Access ...
OPERATIONS ...
ban (uu) =
    PRE uu:USER
    THEN access := { uu } <<| access
    END ;
    nn <-- printnumquery (pp) =
    PRE pp:PRINTER
    THEN nn := card (access |> { pp })
    END ;
```

Peter Thiemann (Univ. Freiburg)

SWT 33 / 54

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Relational Operations II

Domain and range restriction

Let R:S < ->T

Domain restriction: Remove elements from dom (R)

- Keep domain elements in U: U <| R = { s |-> t | (s |-> t):R & s:U }
- Drop domain elements in U (anti-restriction, subtraction): U <<| R = { s |-> t | (s |-> t):R & s/:U }

Range restriction: Remove elements from ran (R)

- Keep range elements in U: R |> U = { s |-> t | (s |-> t):R & t:U }
- Drop range elements in U: R |>> U = { s |-> t | (s |-> t):R & t/:U }

Peter Thiemann (Univ. Freiburg)

SWT 34 / 54

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Relations

Relational Operations III

Further Relational Operations

id(S)	identity relation
R-	inverse relation
R[U]	relational image
(R1;R2)	relational composition
R1<+R2	relational overriding

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 35 / 54

Relations

Relational Operations III

Further Relational Operations

id(S)	identity relation
R-	inverse relation
R[U]	relational image
(R1;R2)	relational composition
R1<+R2	relational overriding

Overriding ...

- R1<+R2 means R2 overrides R1</p>
- Union of R1 and R2, but in the intersection of dom (R1) and dom (R2), the elements of R2 take precedence
- R1<+R2 = (dom (R2) <<| R1) \/ R2</p>

Peter Thiemann (Univ. Freiburg)

SWT 35 / 54

イロト 不得下 イヨト イヨト 二日

Functions

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 36 / 54

★ロト ★御 と ★ 注 と ★ 注 と … 注

Functions

- ▶ In B, a function is an unambiguous relation (i.e., a set of pairs)
- Shorthand notation to indicate properties of functions

S+->T	partial function	S>T	total function
S+->>T	partial surjection	S>>T	total surjection
S>+>T	partial injection	S>->T	total injection
S>+>>T	partial bijection	S>->>T	total bijection

Using functions

- f (E) function application
- %x.(P|E) lambda abstraction, P gives type of x

SWT 37 / 54

(日) (同) (三) (三) (三)

Example: Reading Books / Declarations

```
MACHINE Reading
SETS READER; BOOK; COPY; RESPONSE = { yes, no }
CONSTANTS copyof
PROPERTIES copyof : COPY -->> BOOK
VARIABLES hasread, reading
INVARIANT
  hasread : READER <-> BOOK &
  reading : READER >+> COPY &
  (reading ; copyof) /\ hasread = {}
INITIALISATION
  hasread := \{\} || reading = \{\}
```

Peter Thiemann (Univ. Freiburg)

SWT 38 / 54

Example: Reading Books / Operations (Excerpt) OPERATIONS (excerpt)

```
start (rr. cc) =
  PRE
    rr:READER & cc:COPY & copyof (cc)/:hasread(rr) &
    rr/:dom (reading) & cc/:ran (reading)
  THEN
    reading := reading \setminus / \{ rr \mid -> cc \}
  END
٠
,
bb < -- currentbook (rr) =
  PRE
    rr:READER & rr:dom (reading)
  THEN
    bb := copyof (reading (rr))
  END
```

Peter Thiemann (Univ. Freiburg)

SWT 39 / 54

Sequences and Arrays

Sequences

- A sequence over set S is a total function from an initial segment of NAT1 to S
- ▶ seq (S) = (1..N --> S), where N:NAT
- Notation for manipulating sequences: formation, concatenation, first, last, etc

Arrays

- An array over set S is a partial function from an initial segment of NAT1 to S
- (1...N +-> S), where N:NAT
- Notation for updating arrays

a (i) :=
$$E$$
 = a := a <+ { i |-> E }

Peter Thiemann (Univ. Freiburg)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nondeterminism

Nondeterminism

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 41 / 54

◆□> ◆圖> ◆臣> ◆臣> □臣

Nondeterminism in Specifications

Up to now: high-level programming with sets

- deterministic machines
- abstraction from particular data structures
- abstraction from realization of operations
- Further abstraction
 - specification may allow a range of acceptable behaviors
 - specification describes possible choices
 - subsequent refinement narrows down towards an implementation
- This section
 - AMN operations that exhibit nondeterminism

イロト イポト イヨト イヨト

Nondeterminism

Example: Jukebox / Declarations

```
MACHINE Jukebox
SETS TRACK
CONSTANTS limit
PROPERTIES limit:NAT1
VARIABLES credit, playset
INVARIANT credit:NAT & credit<=limit & playset<:TRACK
INITIALISATION credit, playset := 0, {}
```

```
OPERATIONS
  pay (cc) =
    PRE cc:NAT1
    THEN credit := min ( {credit + cc, limit}) END ;
```

Peter Thiemann (Univ. Freiburg)

SWT 43 / 54

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Nondeterminism

```
Example: Jukebox / Operations (excerpt) 
OPERATIONS
```

```
tt < -- play =
  PRE playset /= {}
  THEN ANY tr WHERE tr:playset
       THEN tt := tr || playset := playset - {tr}
       END
  END
;
select (tt) =
  PRE credit>0 & tt:TRACK
  THEN playset := playset \/ {tt}
    || CHOICE credit := credit - 1
       OR skip
       END
  END
```

Peter Thiemann (Univ. Freiburg)

SWT 44 / 54

ANY statement

ANY x WHERE Q THEN S END

- x fresh variable, only visible in Q and S
- Q predicate; type of x; other constraints
- S the body statement
- executes S with an arbitrary value for x fulfilling Q

Examples

Assume total:NAT

- 1. ANY n WHERE n:NAT1 THEN total := total*n END
- 2. ANY t WHERE t:NAT & t<=total & 2*t>= total THEN total := t END

Peter Thiemann (Univ. Freiburg)

SWT 45 / 54

イロト 人間ト イヨト イヨト

ANY weakest precondition

[ANY x WHERE Q THEN S END] $P = !(x) . (Q \Rightarrow [S] P)$

Examples

- 1. [ANY n WHERE n:NAT1 THEN total := total*n END] (total > 1) = !(n).(n:NAT1 => [total := total*n] (total > 1)) = !(n).(n:NAT1 => (total*n > 1)) = (total > 1)
- 2. [ANY t WHERE t:NAT & t<=total & 2*t>= total ...] (total > 1) = !(t).(t:NAT & t<=total & 2*t>= total => [total := t](total > 1)) = !(t).(t:NAT & t<=total & 2*t>= total => (t > 1)) = (total > 2)

Peter Thiemann (Univ. Freiburg)

SWT 46 / 54

イロト イポト イヨト イヨト 二日

CHOICE statement

CHOICE S_1 OR S_2 OR ... END

choice between unrelated statements S₁, S₂, ...

Example

```
Outcome of a driving test
```

```
CHOICE result := pass || licences := licences \/ {examinee}
OR result := fail
END
```

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Nondeterminism

CHOICE weakest precondition

[CHOICE S OR T END] P = [S] P & [T] P

Example

Check that all licenced persons are old enough.

```
CHOICE result := pass ||
    licences := licences \/ {examinee}
OR result := fail
    (licences<:ofAge)</pre>
         CHOICE result := pass ||
 = [ result := pass ||
    licences := licences \/ {examinee} ] (licences<:ofAge)</pre>
        & [result := fail] (licences<:ofAge)
        [licences := licences \/ {examinee}](licences<:ofAge)</pre>
        & (licences<:ofAge)
       (licences<:ofAge) & examinee:ofAge</pre>
  =
                                                            ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへの
Peter Thiemann (Univ. Freiburg)
                                      Software Engineering
                                                                                 SWT
                                                                                         48 / 54
```

Refinement

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 49 / 54

★ロト ★御 と ★ 注 と ★ 注 と … 注

Refinement

- Refinement formalizes design decisions
- Refinement transforms specification towards implementation
- Refinement comes with proof obligations that relate the participating machines

Data refinement

- Formalizes change of data representation
- Usually from abstract to concrete
- Example: set \rightarrow list or array

Refinement of nondeterminism

- Formalizes selection of particular behavior from a nondeterministic specification
- Refined operations are "more deterministic"

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT 50 / 54

イロト 人間ト イヨト イヨト

Example: Jukebox / Declarations

```
REFINEMENT JukeboxR
REFINES Jukebox
CONSTANTS freefreq
PROPERTIES freefreq:NAT1
VARIABLES creditr, playlist, free
INVARIANT
  creditr:NAT & creditr = credit &
  playlist:iseq(TRACK) & ran (playlist) = playset &
  free:0..freefreq
INITIALISATION
  creditr:=0 ; playlist:= [] ; free:=0
```

SWT 51 / 54

Example: Jukebox / Operations (excerpt)

```
select (tt) =
 BEGIN
    IF tt/:ran (playlist) THEN playlist := playlist <- tt END ;
    IF free = freefreq
    THEN CHOICE free := 0 OR creditr := creditr-1 END
    ELSE free := free+1 ; creditr := creditr-1
   END
 END
;
tt <-- play =
 PRE playlist /= []
 BEGIN tt := first (playlist) ;
        playlist := tail (playlist)
 END
```

Peter Thiemann (Univ. Freiburg)

SWT 52 / 54

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proof Obligation for Refinement

- INVARIANT of the REFINEMENT specifies the *linking invariant* between state spaces of original and refinement
- ► Let INVARIANT I in original and INVARIANT IR in refinement
- For INITIALISATION T in original and INITIALISATION TR in the refinement, it must hold that

[TR] (not [T] (not IR))

Peter Thiemann (Univ. Freiburg)

イロト イポト イヨト イヨト 二日

Proof Obligation for Refinement

- INVARIANT of the REFINEMENT specifies the *linking invariant* between state spaces of original and refinement
- ▶ Let INVARIANT I in original and INVARIANT IR in refinement
- For INITIALISATION T in original and INITIALISATION TR in the refinement, it must hold that

[TR] (not [T] (not IR))

For operation PRE P THEN S END in original and PRE PR THEN SR END in refinement, it must hold that

I & IR & P => [SR] (not [S] (not IR))

Peter Thiemann (Univ. Freiburg)

SWT 53 / 54

イロト 不得下 イヨト イヨト 二日

Summary

- B an industrial strength formal method that supports all phases of software development
- Approach:
 - start with high-level spec
 - apply refinement steps until level of implementation reached
 - (code generation tools exist)
- Each refinement step results in proof obligations that must be discharged
- Tools: ProB, Rodin
- Omitted from lecture
 - structuring: machine parameters, inclusion, extension, state and type export
 - implementation machines, loops, library machines
 - more notation ...

Peter Thiemann (Univ. Freiburg)

イロト 不得下 イヨト イヨト 二日