
Software Engineering
Lecture 05: Object-Oriented Analysis

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 51

Outline

Object-Oriented Analysis

I Workflow for object-oriented analysis of systems.

I Modeling: Structural and behavioral

I Overview of supporting UML diagrams

Disclaimer: Today we focus on informal and semi-formal modeling. For a
formal approach see the lecture: “Software Design, Modelling, and
Analysis in UML”

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 51

Object-Oriented Analysis

I After introduction of OOP: need for OOA and OOD

I Purpose: Building OO models of software systems

I No generally accepted methodology; many different approaches:
Booch, Rumbaugh (OMT: Object-modeling technique),
Coad/Yourdon, Jacobson (OOSE: Object-oriented software
engineering), Wirfs-Brock, . . .

I Current approaches rely on UML (Unified Modeling Language,
Booch/Jacobson/Rumbaugh)

I UML supports many kinds of semi-formal modeling techniques
I use case diagrams
I class diagrams
I sequence diagrams
I state machine diagrams
I activity diagrams
I ...

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 51

The Concept “Model”
(according to Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism

A model is always goal-oriented.

I Modeling creates a representation that only encompasses the relevant
features for a particular purpose.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 51

Variations of Models

Informal models

I informal syntax, intuitive semantics

I ex: informal drawing on blackboard, colloquial description

Semi-formal models

I formally defined syntax (metamodel), intuitive semantics

I ex: many diagram types of UML

Formal models

I formally defined syntax and semantics

I ex: logical formulae, phrase structure grammars, programs

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 51

Obtaining a data model

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 51

Ten Steps Towards an OOA Model
Heide Balzert

1. Data analysis: identify classes

2. Identify associations and compositions

3. Identify attributes and operations for each class

4. Construct object life cycle

5. Introduce inheritance

6. Identify internal operations

7. Specify operations

8. Check inheritance

9. Check associations and compositions

10. Decompose in subsystems

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 51

Step: Identify Classes

I identify tangible entities: physical objects (airplane), roles (manager),
events (request, form), interactions (meeting), locations (office),
organizational units (company)

I top-down: scan verbal requirements
I nouns → objects, attributes
I verbs → operations

bottom-up:
I collect attributes (data) and operations
I combine into classes

I name of class: concrete noun, singular, describes all objects (no roles)

I classes related via invariable 1:1 associations may be joined

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 51

Step: Identify Associations and Compositions

I permanent relations between objects

I scan verbal requirements for verbs

I technical subsidiarity: composition

I communication between objects → association

I determine roles

I snapshot / history required?

I constraints?

I are there attributes / operations for association?

I determine cardinalities

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 51

Attributes and Operations by Form Analysis

name
picture
description
category
status

display()
edit()
...

...

Good

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 51

Step: Identify Attributes and Operations

CRC Cards (Wirfs-Brock)

I CRC = Class-Responsibility-Collaboration

I initially, a class is assigned responsibilities and collaborators

I collaborator is a class cooperating to fulfill responsibilities

I three-four responsibilities per card (class); otherwise: split class

I developed iteratively through series of meetings

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 51

Example CRC Card

class name

responsibilities collaborators

ship product

check payment

determine price

check if on stock item

item

customer

order

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 51

Classes From Use Cases

Use Case: buy product

I Locate product in catalogue

I Browse features of product

I Place product in shopping cart

I Proceed to checkout

I Enter payment info

I Enter shipping info

I Confirm sale

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 51

Notation for Designing Datatypes (F#)

type sale = { cart: shoppingCart;

shipment: shipmentInfo;

payment: paymentInfo }

and shoppingCart = { contents: product list }

and shipmentInfo = { name: string;

address: string }

and paymentInfo = { accountNr: string;

bankingCode: string }

and product = { name: string;

price: int;

features: feature list }

and feature = { name: string }

I Named record types

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 51

Classes from Requirements

A graphics program should draw different geometric shapes in
a coordinate system. There are four kinds of shapes:

I Rectangles given by upper left corner, width, and height
I Disks given by center point and radius
I Points
I Overlays composed of two shapes

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 51

Classes from Requirements

type cartPt = { x: int; y: int }

and shape =

Rectangle of rectangle

| Disk of disk

| Point of point

| Overlay of overlay

and rectangle = { loc: cartPt; width: int; height: int }

and disk = { loc: cartPt; radius: int }

and point = { loc: cartPt }

and overlay = { lower: shape; upper: shape }

I Sum type (shape) for alternatives

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 51

Classes from Requirements

class CartPt{

int x, y;

}

abstract class Shape {}

class Rectangle extends Shape {

cartPt loc;

int width, height;

}

class Disk extends Shape {

cartPt loc;

int radius; }

class Point extends Shape { cartPt loc; }

class overlay extends Shape { Shape upper, lower; }

I Use inheritance for alternatives.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 51

Expressing an OO data model

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 51

Class Diagram (UML)

I Structural diagram, data-oriented view, cf. ERD

I Representation of classes and their static relationships

I No information on run-time behavior
I Notation is graph with

I nodes: classes (rectangles)
I edges: various relationships between classes

I May contain interfaces, packages, relationships, as well as instances
(objects, links)

I (Only most important modeling elements)
See http://www.uml-diagrams.org/ for more

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 51

http://www.uml-diagrams.org/

Example Class Diagram

n

role

association

role

m

inheritance

class name

class

name of abstract class
−or−

abstractOperation1()

Class 1 class 2

birdairplanecar

class operation
op2(parmList): result type

class attribute
/derived attribute

attribute2: Typ = default

attribute1

vehicle flying object

implementation of op2

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 51

Example Class Diagram

subpart

superpart

partno

Part
product

order orderer

manufacturer
Company

**

* 1

*
0..1

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 51

Classes

A class box has compartments for

I Class name

I Attributes (variables, fields)

I Operations (methods)

I only name compartment obligatory

I additional compartments may be defined

I class (static) attributes / operations underlined

I derived (computed) attributes indicated by “/”

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 51

Relations Between Classes

Binary Association

I indicates “collaboration” between two classes (possibly reflexive)

I solid line between two classes
I optional:

I association name
I decoration with role names
I navigation indicated by arrows (Design)
I multiplicities (Design)

Generalization

I indicates subclass relation

I solid line with open arrow towards super class

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 51

Aggregation and Composition

I Aggregation is a particularly strong association: part-of
I Notation: edge with rhombus as arrow head

I Composition is yet stronger form of aggregation

I Meaning: object “belongs existentially” to other object

I Object and its components live and die together

I Notation: edge with black rhombus as arrow head

Example

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 51

Mapping from F# Types to Class Diagrams
Mapping a type definition

Jtype tdef 1 and . . . and tdef nK = Jtdef 1K ∪ · · · ∪ Jtdef nK

Mapping a record type

Jtname = {xi : ti , yj : tnj cj}K =

JlistK = ∗
JoptionK = 0, 1
J K = 1

tname

...

x_i : t_i

tn_1 tn_n

y_1 y_n

[[c_1]] [[c_n]]

Mapping a sum type

Jtname = T1 of t1 | · · · | Tn of tnK =

tname

t1 tn...

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 51

Applied to Example Code

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 51

. . . Operations

A graphics program should draw different geometric shapes
. . .

I Each class should have a draw() operation

I Shape should also have draw() operation

I Discovered the “Composite Pattern”!

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 51

Example Code with Draw Method

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 51

Example Code with Draw Method

class CartPt{

int x, y;

}

abstract class Shape {public void draw();}

class Rectangle extends Shape {

cartPt loc;

int width, height;

}

class Disk extends Shape {

cartPt loc;

int radius; }

class Point extends Shape { cartPt loc; }

class overlay extends Shape { Shape upper, lower; }

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 51

Step: Construct Object Life Cycle

Object Life Cycle

I Object creation

I Initialization

I . . .

I Finalization

I Object destruction

Life Cycle — Type State

I certain operations can only be executed in particular state

I operation =̂ event that triggers a state change

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 51

Modeling Behavior with Finite State Machines (FSM)

I Basis: deterministic finite automaton (FSA) accepts a language ⊆ Σ∗

A = (Q,Σ, δ, q0,F) where

Q: finite set of states
Σ: finite input alphabet
δ: Q × Σ −→ Q transition function
q0 ∈ Q initial state
F ⊆ Q set of final states

I FSA with output specifies a translation Σ∗ → ∆∗

I M = (Q,Σ,∆, δ, λ, q0)
I replace final states F by output alphabet ∆ and output function λ
I Mealy-automaton: λ : Q × Σ −→ ∆

edge from q to δ(q, a) additionally carries λ(q, a)
I Moore-automaton: λ : Q −→ ∆

state q labeled with λ(q)

I Mealy and Moore automata are equivalent regarding the translation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 51

Graphical Representation of FSM

I nodes: states of the automaton (circles or rectangles)

I arrow pointing to q0

I final states indicated by double circle

I edges: if δ(q, a) = q′ then transition labeled a from q to q′

I output: if λ(q, a) = o then transition from q to q′ labeled with a/o

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 51

Example: Digital Clock as a Mealy-automaton
Start

display

timebutton 1 pressed/

hours flashing

button 2 pressed/

increase hours

hours

button 1 pressed/

minutes flashing adjust

minutes

button 1 pressed/

display time

adjust

seconds

adjust

button 2 pressed/

reset seconds

increase minutes

button 2 pressed/

button 1 pressed/

seconds flashing

Drawback: FSMs get too big → structuring required → UML state machine

diagram

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 51

Example: Java Iterator — State Machine Diagram

interface Iterator<E> {

/** Returns true if the iteration has more elements. */

public boolean hasNext();

/** Returns the next element in the iteration. */

public E next();

/** Removes from the underlying collection the last element

returned by the iterator (optional operation). */

public void remove();

}

Exhausted

HasNext

HadNext

Unknown

hasNext()

next() hasNext()

hasNext()=false

hasNext()=false
remove()

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 51

State Machine Diagram (UML)

I behavioral diagram derived from David Harel’s Statecharts

I hybrid automata (“Moore + Mealy”)
I each state may have

I entry action: executed on entry to state
∼= labeling all incoming edges

I exit action: executed on exit of state
∼= labeling all outgoing edges

I do activity:
executed while in state

I composite states

I states with history

I concurrent states

I optional: conditional state transitions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 51

Example: State Machine Diagram

event 3

state 1

event 1/

action 1

state 3

exit / action 4

do / activity 4 event 4

state 4

action 2

state 2

entry / action 3

include / submachine_invocation

event 2(condition 2)/

idle

ticket inserted/

display amount

waiting for

coin

coin inserted (enough)/

print card

coin inserted (not enough)/

display remaining amount

release coins

timeout /

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 36 / 51

Composite States

I states can be grouped into a composite state with designated start
node (→ hierarchy)

I edges may start and end at any level

I transition from a composite state ∼=
set of transitions with identical labels from all members of the
composite state

I transition to a composite state leads to its initial state

I transitions may be “stubbed”

B

A

b
a
a

b

b

C

D
A

B

b
a

b

b

C

D
b

a

b

C

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 37 / 51

States with History

I composite state with history — marked (H) — remembers the
internal state on exit and resumes in that internal state on the next
entry

A

b

b

H

B

a

a

C

I the history state indicator may be target of transitions from the
outside and it may indicate a default “previous state”

I “deep history” (H*) remembers nested state

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 38 / 51

Concurrent States

I composite state may contain concurrent state regions
(separated by dashed lines)

I all components execute concurrently

I transitions may depend on state of another component
(synchronisation)

I explicit synchronization points

I concurrent transitions
G

E

A

a

B

(in C)

b a

F

C

c

D

sequence of states on input abcb:
(A,C), (B,D), (B,D), (B,C), (A,C)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 39 / 51

Alternative: Activity Diagram
I Behavioral diagram, which emphasizes flow of control

http://www.uml-diagrams.org/examples/activity-examples-resolve-issue.png

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 40 / 51

http://www.uml-diagrams.org/examples/activity-examples-resolve-issue.png

Activity Diagram with Synchronization

Person

fetch

cups

brew

coffee

drink

can of Coke

[no coffee] [no Coke]

[Coke present]

light off

take

seek

drink

[coffee present]

pour coffee

in filter

put filter

in machine

fill in

water

pour

coffee

switch on
machine

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 41 / 51

Alternative: Sequence Diagram
I behavioral diagram describing interaction between group of objects
I → communication protocols

http://www.uml-diagrams.org/examples/sequence-diagram-overview.png

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 42 / 51

http://www.uml-diagrams.org/examples/sequence-diagram-overview.png

Alternative: Object and Collaboration Diagrams (UML)

Object Diagram (structural)

I notation for objects and their links
I UML notation:

I nodes: objects (rectangles), labeled with object name:type
I edges: links between objects

“objects that know each other”

Properties of object diagrams

I snapshot of a system state

I configuration of a specific group of objects

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 43 / 51

Example: Object Diagram

:class2 :class3

attribute1 = value1

attribute2 = value2

anotherObject

anObject:class

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 44 / 51

Example: Object Diagram

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 45 / 51

Collaboration diagrams (behavioral)

Collaboration diagram = object diagram + behavior

I objects → object roles

I object notation stands for “any object of that class”
I object roles and links may be labeled with constraints

I {new}
I {transient}
I {destroyed}

I labeling links with numbered operations

I numbering implies sequence of execution

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 46 / 51

Example: Collaboration Diagram

1: display()

Internet

User

1.1.3: listObservedGoods()

1.1.2: listOwnGoods()

1.1.1: display()

1.1.2.1: getName() :Name

:Name

:Hammer

1.1: display()

1.1.3.1: getName()

:Good

:Account :Profile

:Good

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 47 / 51

Step: Introduce Inheritance

I Use sparingly!

I Use inheritance for abstracting common patterns:
Collect common attributes and operations in abstract superclass

I Alternative: collect in separate class and use composition

Inheritance is a good choice when:

I Your inheritance hierarchy represents an “is-a” relationship and not a
“has-a” relationship.

I You can reuse code from the base classes.

I You need to apply the same class and methods to different data types.

I The class hierarchy is reasonably shallow, and other developers are
not likely to add many more levels.

I You want to make global changes to derived classes by changing a
base class.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 48 / 51

Inheritance: Example

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 49 / 51

Final Step: Specify Operations

I Data-driven development: [Jackson]
Derive structure of operation from data it operates on

I Test-driven development: [Beck]
Specify a set of meaningful test cases

I Design by contract: [Meyer]
I Define class invariants
I Specify operations by pre- and postconditions

I Pseudocode Programming Process (PPP): [McConnell]
I Start with high-level pseudocode
I Refine pseudocode until implementation obvious

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 50 / 51

Summary

I Workflow for object-oriented analysis.

I There are structural models: Class diagrams, object diagrams

I There are behavioral models: State machines, sequence and activity
diagrams, collaboration diagrams, etc.

There are many alternatives for modeling a software system. Choose the
one that fits the particular problem.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 51 / 51

