Software Engineering

Lecture 06: Design — an Overview

Peter Thiemann

University of Freiburg, Germany

SS 2014

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

1/35



The Design Phase

Programming in the large

GOAL:

transform results of analysis (requirements specification, product model)
into a software architecture

Main Activities

» Decomposition into components

» Development of software architecture

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2/35



Software Architecture

SW architecture = components, connectors, topology

» Component

» Designated computational unit with specified interface
» Examples: client, server, filter, layer, database

» Connector

» Interaction point between components
» Examples: procedure call, event broadcast, pipe

» Topology
» Guidelines and restrictions on connecting components

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

3/35



Architectural Styles — Overview

Dataflow systems
Batch sequential, Pipes and filters

Call-and-return systems
Main program/subroutine, OO systems, Hierarchical layers

Independent components
Communicating processes, Event systems, Actors

Virtual machines
Interpreters, Rule-based systems

Data-centered systems (repositories)
Databases, Hypertext systems, Blackboards

(according to Shaw and Garlan, Software Architecture, Prentice Hall)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

4 /35



Classification of an Architectural Style

» design vocabulary—types of components and connectors
» allowable structural patterns

» underlying computational model (semantic model)

> essential invariants

» common examples of use

» advantages/disadvantages

» common specializations

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5/35



Some Example Architectures

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 /35



Architecture: Batch Sequential

v

Separate, sequential passes

v

Data passed linearly

v

Each pass runs to completion before the next starts

» Example: traditional compiler architecture

Text Code
— Lex > Syn = Sem —=| Opt = Code ——

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7/35



Archtecture: Pipes and Filters

» Data passes continually through the system

» Each component (filter) transforms input streams to output streams
incrementally

» Buffered channels (pipes) connect inputs to outputs

» Filters are independent entities

» Common specializations: pipeline (linear sequence of filters), bounded
pipes, typed pipes

’;iltegk
—] = = -
e C

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 /35




Properties of Pipes and Filters

global understanding
reuse
easy to maintain and enhance

specialized analysis

+ o+ o+ + o+

potential for concurrent execution
— interactive applications
— correpondences between streams

— common format for data transmission

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9/35



Architecture: Event-based, Implicit Invocation

» Also: reactive integration or selective broadcast
» Each component may

» announce events
> register an interest in certain events, associated with a callback

» When event occurs, the system invokes all registered callbacks
= Announcer of event does not know which components are registered
» Order of callback invocation cannot be assumed

» Applications: integration of tools, maintaining consistency
constraints, incremental checking

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 35



Properties of Implicit Invocation

+ reuse

+ system evolution

— lack of control

— data passed through shared repository

— correctness?

Peter Thiemann (Univ. Freiburg) Software Engineering

SWT

11/35



Architecture: Layered Systems

» Hierarchy of system components, grouped in layers

> Inside of layer: arbitrary access between components
» Between layers

> access restricted to lower layers: linear, strict, treeshaped
» small interfaces

» Advantages: clarity, reusability, maintainability, testability

» Disadvantages: not always appropriate, loss of efficiency, no
restrictions inside layers

» Examples: communication protocols (OSI), database systems,
operating systems

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 35



Application Layer
Couche application

Presentation layer
Couche présentation

Session layer
Couche session

Transport layer
Couche transport

Network layer
Couche réseau

bata link layer
Couche liaison des données

Physical Layer
Couche physique

Open system A Intermediate Open system B
system
Systéme ouvert A Systéme Systéme ouvert B
internédiaire
— —
| | | |
| 7 | | 7 [
 —— B
| | | |
| 6 | | 6 |
f———— A
| | | |
| 2 | | 5 |
— e
| | | |
| “ | | 4 |
p— [ |
T , [ {
| | | | | |
| 3 | | 3 | | 3 |
p— p— | —
| | | | | |
| 2 | | 2 | | 2 |
k ! k 1 k 1
| | | | | |
| 1 | | 1 | | 1 |
h h h . h .
T T
/ Physical media | | Support  physique

Figure 1

The seven-layer reference model
for open systems i i

Peter Thiemann (Univ. Freiburg)

Software Engineering

SWT

13 /35



Typical Setup

1/0 layer

user interface

dialogue
layer

application
specific

application

application
general

logical
data access

data management

physical
data access

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 35



Example: Three-Tier Architecture

1 1 [

UserInterface

TransactionM anagement AccountM anagement

v

Three kinds of subsystems
> user interface
» control — transaction management
» database — account management

v

Enables consistent look-and-feel

v

Useful with single data repository
Web architecture

» each tier runs on different location
> browser, web server, application server

v

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

15 /35



Architecture: Repository

» Central data structure (current state, blackboard)
» Independent components acting on it

» Example: architecture of modern compilers, theorem provers

Sem opt1 §

"
Syn
AN —

Cod
Lex Tree / ode

Opt2

Edit Sym tab Syn

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

16 / 35



Architecture: Interpreter

» Virtual machine in software

» Bytecode program + interpretation engine

» Examples: programming language, malware packers

Memory o Program
being
Data interpreted
Inputs
——= (program
state)

Computation
(State Machine)

i Sdected
outputs / Simulated

Internal

Interpretatio Instruction Interpreter
. Selected Data
Engine / State
Data Access
(fetch/store)

Peter Thiemann (Univ. Freiburg) Software Engineering

SWT

17 /35



Further Architectural Styles

» Distributed processes
» topological features
> interprocess protocols
» client-server organization
» Main program/subroutine: mirroring the programming language
» Domain specific SW architectures
» tailored to family of applications
» structured, e.g., according to hardware requirements
» Examples: avionics, vehicle management, ...
» State transition systems
» Combinations of architectural styles

> hierarchically
» mixture of connectors

Peter Thiemann (Univ. Freiburg) Software Engineering SWT

18 /35



