Software Engineering Lecture 07: Design by Contract

Peter Thiemann

University of Freiburg, Germany

02.06.2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Table of Contents

Design by Contract

Contracts for Procedural Programs Contracts for Object-Oriented Programs Contract Monitoring Verification of Contracts

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 2 / 62

Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

Peter Thiemann (Univ. Freiburg)

Software Engineering

 <</th>
 ≥
 <</th>
 <</th>

*ロト *檀ト *注ト *注ト

Underlying Idea

Transfer the notion of contract between business partners to software engineering.

What is a contract?

A binding agreement that explicitly states the **obligations** and the **benefits** of each partner.

Example: Contract between Builder and Landowner

	Obligations	Benefits
Landowner	Provide 5 acres of	Get building in less
	land; pay for building	than six months
	if completed in time	
Builder	Build house on pro-	No need to do any-
	vided land in less than	thing if provided land
	six month	is smaller than 5 acres;
		Receive payment if
		house finished in time

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods, components/operations, ...

In terms of software architecture, the partners are the components and each connector may carry a contract.

Peter Thiemann (Univ. Freiburg)

Contracts for Procedural Programs

- Goal: Specification of imperative procedures
- Approach: give assertions about the procedure
 - Precondition
 - must be true on entry
 - ensured by caller of procedure
 - Postcondition
 - must be true on exit
 - ensured by procedure if it terminates
- ▶ Precondition(State) ⇒ Postcondition(procedure(State))
- Notation: {Precondition} procedure {Postcondition}
- Assertions stated in first-order predicate logic

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 7 / 62

Example

Consider the following procedure:

```
/**
 * Oparam a an integer
 * Oreturn integer square root of a
 */
int root (int a) {
  int i = 0:
  int k = 1;
  int sum = 1;
  while (sum \leq = a) {
    k = k+2;
    i = i+1;
    sum = sum+k;
  }
  return i;
}
```

イロト イポト イヨト イヨト

Specification of root

- ▶ types guaranteed by compiler: a ∈ integer and root ∈ integer (the result)
- 1. root as a partial function $\begin{array}{l} \mbox{Precondition: } a \geq 0 \\ \mbox{Postcondition: root} * \mbox{root} \leq a < (\mbox{root} + 1) * (\mbox{root} + 1) \end{array}$
- root as a total function
 Precondition: true
 Postcondition:

$$\begin{array}{rl} (a \geq 0 & \Rightarrow & \texttt{root} * \texttt{root} \leq a < (\texttt{root} + 1) * (\texttt{root} + 1) \\ \land \\ (a < 0 & \Rightarrow & \texttt{root} = 0) \end{array}$$

Peter Thiemann (Univ. Freiburg)

Weakness and Strength

Goal:

- find weakest precondition

 a precondition that is implied by all other preconditions
 highest demand on procedure
 largest domain of procedure
 (Q: what if precondition = false?)
- find strongest postcondition

 a postcondition that implies all other postconditions
 smallest range of procedure
 (Q: what if postcondition = true?)

Met by "root as a total function":

- true is weakest possible precondition
- "defensive programming"

Peter Thiemann (Univ. Freiburg)

02.06.2014 10 / 62

Example (Weakness and Strength)

Consider root as a function over integers

Precondition: true

Postcondition:

$$\begin{array}{ll} (\texttt{a} \geq \texttt{0} & \Rightarrow & \texttt{root} * \texttt{root} \leq \texttt{a} < (\texttt{root} + 1) * (\texttt{root} + 1)) \\ \land \\ (\texttt{a} < \texttt{0} & \Rightarrow & \texttt{root} = \texttt{0}) \end{array}$$

- true is the weakest precondition
- The postcondition can be strengthened to

$$\begin{array}{lll} (\texttt{root} \geq \texttt{0}) & \wedge \\ (\texttt{a} \geq \texttt{0} & \Rightarrow & \texttt{root} * \texttt{root} \leq \texttt{a} < (\texttt{root} + 1) * (\texttt{root} + 1)) & \wedge \\ (\texttt{a} < \texttt{0} & \Rightarrow & \texttt{root} = \texttt{0}) \end{array}$$

Peter Thiemann (Univ. Freiburg)

02.06.2014 11 / 62

An Example

Insert an element in a table of fixed size

```
class TABLE<T> {
    int capacity; // size of table
    int count; // number of elements in table
    T get (String key) {...}
    void put (T element, String key);
}
```

Precondition: table is not full

count < capacity

Postcondition: new element in table, count updated

```
\texttt{count} \leq \texttt{capacity}
 \land \texttt{get}(\texttt{key}) = \texttt{element}
 \land \texttt{count} = \texttt{old} \texttt{count} + 1
```

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 12 / 62

	Obligations	Benefits
Caller	Call put only on	Get modified table
	non-full table	in which element
		is associated with
		key
Procedure	Insert element in	No need to deal
	table so that it	with the case
	may be retrieved	where table is full
	through key	before insertion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへの

Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 14 / 62

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Contracts for Object-Oriented Programs

Contracts for methods have additional features

- local state receiving object's state must be specified
- inheritance and dynamic method dispatch receiving object's type may be different than statically expected; method may be overridden

Peter Thiemann (Univ. Freiburg)

イロト イポト イヨト イヨト

Local State: Class Invariant

- class invariant INV is predicate that holds for all objects of the class
- $\Rightarrow\,$ must be established by all constructors
- $\Rightarrow\,$ must be maintained by all public methods

Pre- and Postconditions for Methods

constructor methods c

 $\{\operatorname{Pre}_c\} \ c \ \{INV\}$

visible methods m

 $\{\operatorname{Pre}_m \land INV\} \ m \ \{\operatorname{Post}_m \land INV\}$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 17 / 62

Table example revisited

- count and capacity are instance variables of class TABLE
- ► INV_{TABLE} is count ≤ capacity
- specification of void put (T element, String key) Precondition:

```
count < capacity
```

Postcondition:

 $\texttt{get}(\texttt{key}) = \texttt{element} \land \texttt{count} = \texttt{old} \texttt{ count} + 1$

Peter Thiemann (Univ. Freiburg)

02.06.2014 18 / 62

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Inheritance and Dynamic Binding

- Subclass may override a method definition
- Effect on specification:
 - Subclass may have different invariant
 - Redefined methods may
 - have different pre- and postconditions
 - raise different exceptions
 - \Rightarrow method specialization
- Relation to invariant and pre-, postconditions in base class?
- ► Guideline: No surprises requirement (Wing, FMOODS 1997) Properties that users rely on to hold of an object of type T should hold even if the object is actually a member of a subtype S of T.

Peter Thiemann (Univ. Freiburg)

02.06.2014 19 / 62

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Invariant of a Subclass

Suppose

class MYTABLE extends TABLE ...

- each property expected of a TABLE object should also be granted by a MYTABLE object
- ▶ if o has type MYTABLE then *INV*_{TABLE} must hold for o
- \Rightarrow *INV*_{MYTABLE} \Rightarrow *INV*_{TABLE}
 - ► Example: MYTABLE might be a hash table with invariant

```
INV_{\tt MYTABLE} \equiv {\tt count} \leq {\tt capacity}/3
```

Peter Thiemann (Univ. Freiburg)

02.06.2014 20 / 62

Method Specialization

If MYTABLE redefines put then ...

- the precondition in the subclass must be weaker and
- the postcondition in the subclass must be stronger

than in the superclass because in

```
TABLE personnel = new MYTABLE (150);
```

personnel.put (new Terminator (3), "Arnie");

the caller

- only guarantees Pre_{put,Table}
- and expects Post_{put,Table}

Peter Thiemann (Univ. Freiburg)

02.06.2014 21 / 62

Requirements for Method Specialization

Suppose class T defines method m with assertions $\operatorname{Pre}_{T,m}$ and $\operatorname{Post}_{T,m}$ throwing exceptions $\operatorname{Exc}_{T,m}$. If class S extends class T and redefines m then the redefinition is a sound method specialization if

- $\mathbf{Pre}_{T,m} \Rightarrow \mathbf{Pre}_{S,m}$ and
- $\mathbf{Post}_{S,m} \Rightarrow \mathbf{Post}_{T,m}$ and
- ► Exc_{S,m} ⊆ Exc_{T,m} each exception thrown by S.m may also be thrown by T.m

Peter Thiemann (Univ. Freiburg)

02.06.2014 22 / 62

Example: MYTABLE.put

- Pre_{MYTABLE,put} = count < capacity/3 not a sound method specialization because it is not implied by count < capacity.</p>
- ► MYTABLE may automatically resize the table, so that Pre_{MYTABLE,put} ≡ true is a sound method specialization because count < capacity ⇒ true!</p>
- Suppose MYTABLE adds a new instance variable T lastInserted that holds the last value inserted into the table.

is a sound method specialization because $Post_{MYTABLE,put} \Rightarrow Post_{TABLE,put}$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 23 / 62

Interlude: Method Specialization since Java 5

- Overriding methods in Java 5 only allows specialization of the result type. (It can be replaced by a subtype).
- The parameter types muss stay unchanged (why?)

Example : Assume B extends A

```
class Original {
    A m () {
        return new A();
    }
}
class Specialization extends Original {
    B m () { // overrides method Original.m()
        return new B();
    }
}
```

Peter Thiemann (Univ. Freiburg)

02.06.2014 24 / 62

Interlude: NO Specialization

- Method specialization interferes with overloading in Java
- Class Specialization has two different methods

Example : Assume B extends A

```
class Original {
    void m (B x) {
        return;
    }
}
class Specialization extends Original {
    void m (A x) { // does NOT override method Original.m()
        return;
    }
}
```

Peter Thiemann (Univ. Freiburg)

02.06.2014 25 / 62

Design by Contract Contract Monitoring

Contract Monitoring

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 26 / 62

イロト イ部ト イヨト イヨト 三日

Contract Monitoring

- What happens if a system's execution violates an assertion at run time?
- A violating execution runs outside the system's specification.
- The system's reaction may be arbitrary
 - crash
 - continue

Contract Monitoring

- What happens if a system's execution violates an assertion at run time?
- A violating execution runs outside the system's specification.
- The system's reaction may be arbitrary
 - crash
 - continue

Contract Monitoring

- evaluates assertions at run time
- raises an exception indicating any violation
- assign blame for the violation

Peter Thiemann (Univ. Freiburg)

02.06.2014 27 / 62

Contract Monitoring

- What happens if a system's execution violates an assertion at run time?
- A violating execution runs outside the system's specification.
- The system's reaction may be arbitrary
 - crash
 - continue

Contract Monitoring

- evaluates assertions at run time
- raises an exception indicating any violation
- assign blame for the violation

Why monitor?

- Debugging (with different levels of monitoring)
- ► Software fault tolerance (*e.g.*, α and β releases)

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 27 / 62

What can go wrong

precondition: evaluate assertion on entry identifies problem in the caller postcondition: evaluate assertion on exit identifies problem in the callee invariant: evaluate assertion on entry and exit problem in the callee's class hierarchy: unsound method specialization in class Sneed to check (for all superclasses T of S) • $\mathbf{Pre}_{T,m} \Rightarrow \mathbf{Pre}_{S,m}$ on entry and • **Post**_{S.m} \Rightarrow **Post**_{T.m} on exit how?

Peter Thiemann (Univ. Freiburg)

02.06.2014 28 / 62

Hierarchy Checking

Suppose class S extends T and overrides a method m. Let T = new S() and consider x.m()

- on entry
 - if $\mathbf{Pre}_{T,m}$ holds, then $\mathbf{Pre}_{S,m}$ must hold, too
 - Pre_{S,m} must hold
- ► If the precondition of S is not fulfilled, but the one of T is, then this is a wrong method specialization.
- on exit
 - Post_{S,m} must hold
 - if $Post_{S,m}$ holds, then $Post_{T,m}$ must hold, too
- In general, with more than two classes:
 - Cascade of implications between S and T must be checked.
 - All intermediate pre- and postconditions must be checked.

Peter Thiemann (Univ. Freiburg)

02.06.2014 29 / 62

Examples

```
interface IConsole {
  Qpost { getMaxSize > 0 }
  int getMaxSize();
  @pre { s.length () < this.getMaxSize() }</pre>
  void display (String s);
class Console implements IConsole {
  Qpost { getMaxSize > 0 }
  int getMaxSize () { ... }
  @pre { s.length () < this.getMaxSize() }</pre>
  void display (String s) { ... }
```

Peter Thiemann (Univ. Freiburg)

02.06.2014 30 / 62

A Good Extension

```
class RunningConsole extends Console {
    @pre { true }
    void display (String s) {
    ...
    super.display(String. substring (s, ..., ... + getMaxSize()))
    ...
    }
}
```

A Bad Extension

```
class PrefixedConsole extends Console {
   String getPrefix() {
    return ">> ";
   }
   @pre { s.length() < this.getMaxSize() - this.getPrefix().length() }
   void display (String s) {
      super.display (this.getPrefix() + s);
   }
}</pre>
```

- caller may only guarantee IConsole's precondition
- Console.display can be called with argument that is too long
- blame the programmer of PrefixedConsole!

Peter Thiemann (Univ. Freiburg)

Properties of Monitoring

- Assertions can be arbitrary side effect-free boolean expressions
- Instrumentation for monitoring can be generated from the assertions
- Monitoring can only prove the presence of violations, not their absence
- Absence of violations can only be guaranteed by formal verification

(日) (周) (三) (三)

Design by Contract Verification of Contracts

Verification of Contracts

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 34 / 62

イロト イ団ト イヨト イヨト 三日

Verification of Contracts

- Given: Specification of imperative procedure by Precondition and Postcondition
- Goal: Formal proof for
 Precondition(State) ⇒ Postcondition(procedure(State))
 if procedure(State) terminates
- Method: Hoare Logic, *i.e.*, a proof system for Hoare triples of the form

$\{ \textbf{Precondition} \} \textbf{ procedure } \{ \textbf{Postcondition} \}$

- named after C.A.R. Hoare, inventor of Quicksort, CSP, and many other
- here: method bodies, no recursion, no pointers (extensions exist)

Peter Thiemann (Univ. Freiburg)

イロト 不得 トイヨト イヨト 二日

Syntax of While

A small language to illustrate verification

$$E$$
::= $c \mid x \mid E + E \mid \dots$ expressions B, P, Q ::= $\neg B \mid P \land Q \mid P \lor Q$ boolean expressions $\mid E = E \mid E \leq E \mid \dots$ C, D ::=skipno operation $\mid x \leftarrow E$ assignmentassignment $\mid C; D$ sequence $\mid if B$ then C else Dconditional \mid while B do Citeration

 \mathcal{H} ::= {*P*}*C*{*Q*} Hoare triples

(boolean) expressions are free of side effects

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 36 / 62

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Proof Rules for Hoare Triples

- It is possible, but tedious, to prove that {P} C {Q} holds directly from the definition:
 If P(σ) and σ' = S[C]σ is terminating, then P(σ') holds
- Instead: define axioms and inferences rules
- Construct a derivation to prove the triple
- Choice of axioms and rules guided by structure of C

Peter Thiemann (Univ. Freiburg)

02.06.2014 37 / 62

Design by Contract Verification of Contracts

Skip Axiom

$\{P\} \, \operatorname{skip} \, \{P\}$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 38 / 62

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Assignment Axiom

$$\{P[x \mapsto E]\} \ x \leftarrow E \ \{P\}$$

Examples:

▶
$$\{1 == 1\} x \leftarrow 1 \{x == 1\}$$

$$\{odd(1)\} \times \leftarrow 1 \{odd(x)\}$$

►
$$\{x == 2 * y + 1\}$$
 $y \leftarrow 2 * y$ $\{x == y + 1\}$

Peter Thiemann (Univ. Freiburg)

02.06.2014 39 / 62

Sequence Rule

$$\frac{\{P\} C \{R\} \{R\} D \{Q\}}{\{P\} C; D \{Q\}}$$

Example:

$$\begin{array}{c} \{x == 2 * y + 1\} \ y \leftarrow 2 * y \ \{x == y + 1\} \\ \{x == 2 * y + 1\} \ y \leftarrow 2 * y; y \leftarrow y + 1 \ \{x == y\} \end{array}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 40 / 62

◆□> ◆圖> ◆臣> ◆臣> □臣

Conditional Rule

$\frac{\{P \land B\} C \{Q\} \qquad \{P \land \neg B\} D \{Q\}}{\{P\} \text{ if } B \text{ then } C \text{ else } D \{Q\}}$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 41 / 62

Conditional Rule — Issues

Examples:

_

$$\frac{\{P \land x < 0\} \ z \leftarrow -x \ \{z == |x|\}}{\{P\} \ \text{if } x < 0 \ \text{then } z \leftarrow -x \ \text{else } z \leftarrow x \ \{z == |x|\}}$$

- incomplete!
- ▶ precondition for $z \leftarrow -x$ should be $(z == |x|)[z \mapsto -x] \equiv -x == |x|$
- \Rightarrow need logical rules

Logical Rules

weaken precondition

$$\frac{P' \Rightarrow P \quad \{P\} \ C \ \{Q\}}{\{P'\} \ C \ \{Q\}}$$

strengthen postcondition

$$\frac{\{P\} C \{Q\} \qquad Q \Rightarrow Q'}{\{P\} C \{Q'\}}$$

- Example needs strengthening: $P \land x < 0 \Rightarrow -x == |x|$
- holds for all P

• similarly:
$$P \land x \ge 0 \Rightarrow x == |x|$$

Peter Thiemann (Univ. Freiburg)

02.06.2014 43 / 62

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Completed example:

$$\mathcal{D}_{1} = \frac{x < 0 \Rightarrow -x == |x|}{\{x < 0\} \ z \leftarrow -x \ \{z == |x|\}} \frac{\{-x == |x|\} \ z \leftarrow -x \ \{z == |x|\}}{\{x < 0\} \ z \leftarrow -x \ \{z == |x|\}}$$
$$\mathcal{D}_{2} = \frac{x \ge 0 \Rightarrow x == |x|}{\{x \ge 0\} \ z \leftarrow x \ \{z == |x|\}} \frac{\{x == |x|\} \ z \leftarrow x \ \{z == |x|\}}{\{x \ge 0\} \ z \leftarrow x \ \{z == |x|\}}$$
$$\frac{\mathcal{D}_{1}}{\{x < 0\} \ z \leftarrow -x \ \{z == |x|\}} \frac{\mathcal{D}_{2}}{\{x \ge 0\} \ z \leftarrow x \ \{z == |x|\}}$$
$$\frac{\mathcal{D}_{2}}{\{x \ge 0\} \ z \leftarrow x \ \{z == |x|\}}$$

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 44 / 62

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

While Rule

$$\frac{\{P \land B\} C \{P\}}{\{P\} \text{ while } B \text{ do } C \{P \land \neg B\}}$$

P is *loop invariant* Example: try to prove

 \Rightarrow while rule not directly applicable \ldots

Peter Thiemann (Univ. Freiburg)

02.06.2014 45 / 62

While Rule

Step 1: Find the loop invariant

- P ≡ i * i ≤ a ∧ i ≥ 0 ∧ k == 2 * i + 1 ∧ sum == (i + 1) * (i + 1) holds on entry to the loop
- ► To prove that *P* is an invariant, requires to prove that $\{P \land sum \le a\} \ k \leftarrow k+2; i \leftarrow i+1; sum \leftarrow sum + k \ \{P\}$
- It follows by the sequence rule and weakening:

Peter Thiemann (Univ. Freiburg)

02.06.2014 46 / 62

Proof of loop invariance

```
i*i <= a \land i >= 0 \land k == 2*i + 1 \land sum == (i+1)*(i+1) \land sum <= a
             i > 0 \land k + 2 = 2 + 2 + i + 1 \land sum = (i + 1) + (i + 1) \land sum < a 
k < - k+2
             i \ge 0 \land k = 2 + 2 + i + 1 \land sum = (i + 1) + (i + 1) \land sum <= a
             i+1>=1 \land k==2*(i+1)+1 \land sum==(i+1)*(i+1) \land sum<=a \}
i <- i+1
             i \ge 1 \land k = 2 + i + 1 \land sum = i + i
                                                              \land sum<=a }
                   \wedge k==2*i+1
                                                                 \land sum+k<=a+k }
  i*i<=a ∧ i>=1
                                         ∧ sum+k==i*i+k
sum <- sum+k
  i*i <= a \land i >= 1 \land k == 2*i+1 \land sum == i*i+k \land sum <= a+k 
  i*i <= a \land i >= 1 \land k == 2*i+1 \land sum == i*i+2*i+1 \land sum <= a+k 
  i*i<=a ∧ i>=1 ∧ k==2*i+1
                                        \land sum==(i+1)*(i+1) \land sum<=a+k }
  i*i \leq a \land i > = 0 \land k = = 2*i+1
                                         \land sum==(i+1)*(i+1) }
```

Peter Thiemann (Univ. Freiburg)

02.06.2014 47 / 62

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Step 2: Apply the while rule

$$\begin{array}{c} \{P \land sum \leq a\} \ k \leftarrow k + 2; i \leftarrow i + 1; sum \leftarrow sum + k \ \{P\} \\ \hline \{P\} \ \text{while} \ sum \leq a \ \text{do} \ k \leftarrow k + 2; i \leftarrow i + 1; sum \leftarrow sum + k \ \{P \land sum > a\} \\ \hline \text{Now,} \ P \land sum > a \ \text{is} \\ \hline \{ \ i*i \leq a \ / \ i>=0 \ / \ k==2*i+1 \ / \ sum==(i+1)*(i+1) \ / \ sum>a \ \} \\ \hline \text{implies} \end{array}$$

{ i*i<=a /\ a<(i+1)*(i+1) }

Soundness of the Rules

- Intuitively, the proof rules are ok.
- But are they sound?
- ▶ Is there a definition from which $\{P\} \ C \ \{Q\}$ can be proved directly?
- Answer: Yes!
- Each rule can be proved correct from this definition.
- ► First step: define the meaning of expressions and statements

イロト 不得 トイヨト イヨト 二日

Semantics — Domains and Types

- State \bot := State \cup { \bot }
- result \perp indicates non-termination

Peter Thiemann (Univ. Freiburg)

02.06.2014 50 / 62

Semantics — Expressions

. . .

$$\begin{split} \mathcal{E}[\![c]\!]\sigma &= c \\ \mathcal{E}[\![x]\!]\sigma &= \sigma(x) \\ \mathcal{E}[\![E\!+\!F]\!]\sigma &= \mathcal{E}[\![E]\!]\sigma + \mathcal{E}[\![F]\!]\sigma \\ \cdots \\ \mathcal{B}[\![E\!=\!F]\!]\sigma &= \mathcal{E}[\![E]\!]\sigma = \mathcal{E}[\![F]\!]\sigma \\ \mathcal{B}[\![\neg B]\!]\sigma &= \neg \mathcal{B}[\![B]\!]\sigma \end{split}$$

Peter Thiemann (Univ. Freiburg)

02.06.2014 51 / 62

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semantics — Statements

$$\begin{array}{rcl} \mathcal{S}\llbracket C \rrbracket \bot &=& \bot \\ \mathcal{S}\llbracket \text{skip} \rrbracket \sigma &=& \sigma \\ \mathcal{S}\llbracket x \leftarrow E \rrbracket \sigma &=& \sigma [x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma] \\ \mathcal{S}\llbracket C; D \rrbracket \sigma &=& \mathcal{S}\llbracket D \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma) \\ \mathcal{S}\llbracket \text{if } B \text{ then } C \text{ else } D \rrbracket \sigma &=& \mathcal{B}\llbracket B \rrbracket \sigma = \text{true} \rightarrow \mathcal{S}\llbracket C \rrbracket \sigma \text{ , } \mathcal{S}\llbracket D \rrbracket \sigma \\ \mathcal{S}\llbracket \text{while } B \text{ do } C \rrbracket \sigma &=& F(\sigma) \\ & \text{where } F(\bot) &=& \bot \\ F(\sigma) &=& \mathcal{B}\llbracket B \rrbracket \sigma = \text{true} \rightarrow F(\mathcal{S}\llbracket C \rrbracket \sigma) \text{ , } \sigma \end{array}$$

• McCarthy conditional: $b \rightarrow e_1, e_2$

Peter Thiemann (Univ. Freiburg)

02.06.2014 52 / 62

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Proving a Hoare triple

Theorem

The Hoare triple $\{P\} \ C \ \{Q\}$ holds according to the rules of Hoare calculus if $(\forall \sigma \in State) \ P(\sigma) \Rightarrow (Q(S[\![C]\!]\sigma) \lor S[\![C]\!]\sigma = \bot)$ (partial correctness)

Alternative readings

- ▶ predicates as sets of states: $P, Q \subseteq State$ {P} C {Q} $\Rightarrow S[[C]]P \subseteq Q \cup \bot$
- ▶ predicates as boolean expressions: $\mathcal{B}\llbracket P \rrbracket \sigma = \texttt{true} \Rightarrow (\mathcal{B}\llbracket Q \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma) = \texttt{true} \lor \mathcal{S}\llbracket C \rrbracket \sigma = \bot)$

Proof

By induction on the derivation of $\{P\} \in \{Q\}$:

For each Hoare rule, if the above hypothesis holds for the assumptions, then it holds for the conclusion.

Peter Thiemann (Univ. Freiburg)

Design by Contract Verification of Contracts

Skip Axiom — Correctness

$\{P\} \text{ skip } \{P\}$

Correctness

- $\blacktriangleright \ \mathcal{S}[\![\texttt{skip}]\!]\sigma = \sigma$
- ► Assume $\mathcal{B}\llbracket P \rrbracket \sigma = \texttt{true}$. Then $\mathcal{B}\llbracket P \rrbracket (\mathcal{S}\llbracket \texttt{skip} \rrbracket \sigma) = \mathcal{B}\llbracket P \rrbracket \sigma = \texttt{true}$

Peter Thiemann (Univ. Freiburg)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Assignment Axiom — Correctness

$\{P[x\mapsto E]\}\;x\leftarrow E\;\{P\}$

- Semantics: $\mathcal{S}[x \leftarrow E]\sigma = \sigma[x \mapsto \mathcal{E}[E]\sigma]$
- ▶ Under assumption $\mathcal{B}\llbracket P[x \mapsto E] \rrbracket \sigma = \text{true show that}$ $(\mathcal{B}\llbracket P \rrbracket (\mathcal{S}\llbracket x \leftarrow E \rrbracket \sigma) = \text{true} \lor \mathcal{S}\llbracket x \leftarrow E \rrbracket \sigma = \bot)$
- Apply definition of semantics to rhs; show that $\mathcal{B}[\![P[x \mapsto E]]\!]\sigma = \texttt{true implies}$ $(\mathcal{B}[\![P]](\sigma[x \mapsto \mathcal{E}[\![E]]\!]\sigma]) = \texttt{true} \lor \mathcal{S}[\![x \leftarrow E]\!]\sigma = \bot)$
- ▶ Requires induction on boolean expression *P*:

Peter Thiemann (Univ. Freiburg)

02.06.2014 55 / 62

Assignment Axiom — Correctness II

Prove $\mathcal{B}\llbracket P[x \mapsto E] \rrbracket \sigma = \mathcal{B}\llbracket P \rrbracket (\sigma[x \mapsto \mathcal{E}\llbracket E] \sigma])$ by induction on P.

► Case
$$P \equiv \neg Q$$
:
 $\mathcal{B}[\![\neg Q[x \mapsto E]]\!]\sigma \stackrel{def}{=} \neg \mathcal{B}[\![Q[x \mapsto E]]\!]\sigma \stackrel{lH}{=} \neg \mathcal{B}[\![Q]\!](\sigma[x \mapsto \mathcal{E}[\![E]]\!]\sigma]) \stackrel{def}{=} \mathcal{B}[\![\neg Q]\!](\sigma[x \mapsto \mathcal{E}[\![E]]\!]\sigma])$

- Cases $P \equiv Q \land Q'$ and $P \equiv Q \lor Q'$ analogously.
- ► Case $P \equiv E' = E''$: $\mathcal{B}\llbracket (E' = E'')[x \mapsto E] \rrbracket \sigma \stackrel{def}{=} (\mathcal{E}\llbracket E'[x \mapsto E] \rrbracket \sigma = \mathcal{E}\llbracket E''[x \mapsto E] \rrbracket \sigma)$ ► Need another lemma: $\mathcal{E}\llbracket E'[x \mapsto E] \rrbracket \sigma = \mathcal{E}\llbracket E' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma]$ $= (\mathcal{E}\llbracket E' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma] = \mathcal{E}\llbracket E'' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma])$ $\stackrel{def}{=} \mathcal{E}\llbracket E' = E'' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma]$
- Case $P \equiv E' \leq E''$ etc: analogously.

Peter Thiemann (Univ. Freiburg)

02.06.2014 56 / 62

Assignment Axiom — Correctness III

Remains to show that $\mathcal{E}\llbracket E'[x \mapsto E] \rrbracket \sigma = \mathcal{E}\llbracket E' \rrbracket \sigma[x \mapsto \mathcal{E}\llbracket E \rrbracket \sigma]$ by induction on E'.

- ► Case $E' \equiv x$: $\mathcal{E}[[x[x \mapsto E]]]\sigma = \mathcal{E}[[E]]\sigma = \mathcal{E}[[x]]\sigma[x \mapsto \mathcal{E}[[E]]\sigma]$
- ► Case $E' \equiv y, y \neq x$: $\mathcal{E}[\![y[x \mapsto E]]\!]\sigma = \mathcal{E}[\![y]\!]\sigma = \sigma(y) = \sigma[x \mapsto \mathcal{E}[\![E]\!]\sigma](y) = \mathcal{E}[\![y]\!]\sigma[x \mapsto \mathcal{E}[\![E]\!]\sigma]$
- ► Case $E' \equiv -E''$: Immediate by induction. $\mathcal{E}[\![-E''[x \mapsto E]]\!]\sigma \stackrel{def}{=} -\mathcal{E}[\![E''[x \mapsto E]]\!]\sigma \stackrel{lH}{=} -\mathcal{E}[\![E'']]\sigma[x \mapsto \mathcal{E}[\![E]]\sigma] \stackrel{def}{=} \mathcal{E}[\![-E'']]\sigma[x \mapsto \mathcal{E}[\![E]]\sigma]$
- Case $E' \equiv E'' + E'''$ etc: analogously.

Peter Thiemann (Univ. Freiburg)

02.06.2014 57 / 62

Sequence Rule — Correctness

$$\frac{\{P\}\ C\ \{R\}\ \ \{R\}\ D\ \{Q\}}{\{P\}\ C;D\ \{Q\}}$$

Proof

- ► Assume $\mathcal{B}[\![P]\!]\sigma = \text{true}$ Show $\mathcal{S}[\![C; D]\!]\sigma = \bot$ or $\mathcal{B}[\![Q]\!](\mathcal{S}[\![C; D]\!]\sigma) = \text{true}$
- ▶ Induction on $\{P\} \ C \ \{R\}$ yields $\mathcal{B}\llbracket R \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma) = \operatorname{true} \lor \mathcal{S}\llbracket C \rrbracket \sigma = \bot$
- If $S[\![C]\!]\sigma = \bot$ then the rule is correct because $S[\![C;D]\!]\sigma = \bot$.
- ▶ Otherwise: induction on {*R*} *C* {*Q*} yields $\mathcal{B}\llbracket Q \rrbracket (\mathcal{S}\llbracket D \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma)) = \operatorname{true} \lor \mathcal{S}\llbracket D \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma) = \bot$
- Recall that $\mathcal{S}\llbracket D \rrbracket (\mathcal{S}\llbracket C \rrbracket \sigma) \stackrel{\text{def}}{=} \mathcal{S}\llbracket C; D \rrbracket \sigma$
- If $S[[D]](S[[C]]\sigma) = \bot$ then the rule is correct because $S[[C;D]]\sigma = \bot$.
- Otherwise: $\mathcal{B}[\![Q]\!](\mathcal{S}[\![C;D]\!]\sigma) = \texttt{true QED}$

Peter Thiemann (Univ. Freiburg)

Conditional Rule — Correctness

$$\frac{\{P \land B\} C \{Q\}}{\{P\} \text{ if } B \text{ then } C \text{ else } D \{Q\}}$$

Correctness

- ▶ Show: $\sigma \in P$ implies $\mathcal{S}\llbracket$ if *B* then *C* else $D\rrbracket \in Q \cup \{\bot\}$
- Exercise

Peter Thiemann (Univ. Freiburg)

Software Engineering

02.06.2014 59 / 62

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Logical Rules — Correctness

weaken precondition

$$\frac{P' \Rightarrow P \quad \{P\} \ C \ \{Q\}}{\{P'\} \ C \ \{Q\}}$$

strengthen postcondition

$$\frac{\{P\} C \{Q\} \qquad Q \Rightarrow Q'}{\{P\} C \{Q'\}}$$

Correctness $P' \Rightarrow P$ iff $P' \subseteq P$ (as set of states)

Peter Thiemann (Univ. Freiburg)

02.06.2014 60 / 62

While-Rule — Correctness

$$\frac{\{P \land B\} C \{P\}}{\{P\} \text{ while } B \text{ do } C \{P \land \neg B\}}$$

- ▶ Recall the semantics of while: $S[[while B \text{ do } C]]\sigma = F(\sigma)$ where $F(\bot) = \bot$ and $F(\sigma) = B[[B]]\sigma = \texttt{true} \rightarrow F(S[[C]]\sigma), \sigma$
- ▶ It is sufficient to show (fixpoint induction): If $(\forall \sigma \in P)$, $F(\sigma) \in P \land \neg B \lor \{\bot\}$ then $(\forall \sigma \in P)$, $\mathcal{B}[\![B]\!]\sigma = \texttt{true} \to F(\mathcal{S}[\![C]\!]\sigma), \sigma \in P \land \neg B \lor \{\bot\}$
 - ► Case $\mathcal{B}[\![B]\!]\sigma = \text{true}$: By induction on $\{P \land B\} \subset \{P\}$, either $\mathcal{S}[\![C]\!]\sigma = \bot$ (then $F(\mathcal{S}[\![C]\!]\sigma) = F(\bot) = \bot$ completes the proof), or $\mathcal{S}[\![C]\!]\sigma \in P$ (then $F(\mathcal{S}[\![C]\!]\sigma) \in P \land \neg B \lor \{\bot\}$ completes the proof)
 - ► Case $\mathcal{B}[\![B]\!]\sigma = \texttt{false}$: Then $\sigma \in P \land \neg B$. QED

Peter Thiemann (Univ. Freiburg)

02.06.2014 61 / 62

Properties of Formal Verification

- requires more restrictions on assertions (e.g., use a certain logic) than monitoring
- full compliance of code with specification can be guaranteed
- scalability and expressivity are challenging research topics:
 - full automation
 - manageable for small/medium examples
 - large examples require manual interaction
 - real programs use dynamic datastructures (pointers, objects) and concurrency

イロト 不得 トイヨト イヨト 二日