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Distributed Applications

Basic choices
I Architecture

I Client/Server architecture
I Web-Architecture

I Middleware
I Communication between program components
I Requirements

I Language independence
I Platform independence
I Location independence

I Security
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Client/Server Architecture

ServerClient

I/O layer dialogue

layer

logical

data access

physical

data accessgeneral

applicationapplication
specific

thin client fat client

I Application divided in client-part and server-part

I → Five possible divisions of standard (six) layer architecture
(thin client → fat client)

I Characteristics fixed in the requirements
(# of users, operating systems, database systems, . . . )

advantages: traceability of user session, special protocols, design
influenced by # users

disadvantages: scalability, distribution of client software, portability
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Web Architecture

I Client: only I/O layer; Server: everything else

I Client requirements: Web browser (user interface)

I Server requirements:

I Web server (distribution of documents, communication with
application)

I Application server (application-specific and application-general objects)
I Database server (persistent data)

advantages: scalability (very high number of users, in particular with replicated
servers), maintainability (standard components), no software
distribution required

disadvantages: restriction to HTTP, stateless and connectionless protocol requires
implementation of session management, different Web browsers need to
be supported (Internet Programming)

Current technology addresses some of the disadvantages: Servlets, ASP, . . .
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Refinement: N-tier Architecture

I Physical deployment follows the logical division into layers (tiers)

I Why?

I Separation of concerns (avoids e.g. mixing of presentation logic and
business logic)

I Scalability
I Standardized frameworks (e.g., Java Platform, Enterprise Edition, Java

EE 6) handle issues like security and multithreading automatically

I Example (Java EE):

I Presentation: Web browser
I Presentation logic: Web Tier (JSP/servlets, JavaServer Faces,

JavaBeans)
I Business logic: Business Tier (Enterprise JavaBeans, Web Services)
I Data access: Enterprise Information System Tier (Java Persistence

API, JDBC, Java Transaction API)
I Backend integration (legacy systems, DBMS, distributed objects)
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Enterprise JavaBeans (EJB): Goals

I Part of Java Platform, Enterprise Edition (Java EE 6)

I A SPECIFICATION! but implementations are available

I Server-side component architecture for enterprise applications in Java 1

I Defines interaction of components with their container 2

I Development, deployment, and use of web services

I Abstraction from low-level APIs

I Deployment on multiple platforms without recompilation

I Components developed by different vendors

I Compatible with other Java APIs
1→ main target: business logic, between UI and DBMS
2directory services, transaction management, security, resource pooling, etc.
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EJB Component Types

Session Beans

I Interfaces to server-side operations

I Typically business methods
I Three kinds

I Stateless Session Bean: no state carried over between method
invocations; one Bean instance can be shared between multiple clients

I Stateful Session Bean: maintains state between method invocations;
one Bean instance per client

I Singleton Bean: one instance for all
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EJB Component Types /2

Message-Driven Beans

I Event Listeners

I Asynchronous Messaging

Entity Bean

I Object View of RDBMS; object-relational mapping

I Persistence defined separately with JPA (Java Persistence API)
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EJB Component Types /3

I All components implemented as POJOs (plain old Java objects)

I No subclassing or implementing of particular interfaces required

I Special roles imposed by annotations

All invocations through interfaces

I Local interface: for method invocations inside the same VM

I Remote interface: for method invocations with unknown location
(less efficient)

I Implementing one bean means implementing several interfaces and
classes consistently
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EJB Example: Remote Interface
A plain Java interface

public interface CalculatorCommonBusiness {

/**

* Adds all arguments

* @return The sum of all arguments */

int add(int... arguments);

}

public interface CalculatorRemoteBusiness

extends CalculatorCommonBusiness{}
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EJB Example: Bean Implementation Class
A plain Java class

public class CalculatorBeanBase implements CalculatorCommonBusiness {

/**

* {@link CalculatorCommonBusiness#add(int...)}

*/

@Override

public int add(final int... arguments) {

// Initialize

int result = 0;

// Add all arguments

for (final int arg : arguments) {

result += arg;

}

// Return

return result;

}

}
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EJB Example: Bean Class
A plain Java class with annotations

import javax.ejb.LocalBean;

import javax.ejb.Stateless;

@Stateless (name = CalculatorEJB)

@Local (CalculatorRemoteBusiness.class)

public class SimpleCalculatorBean extends CalculatorBeanBase {

/*

* Implementation supplied by common base class

*/

}
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EJB Example: Bean Class
Client Code

import javax.naming.InitialContext;

public class Client

{

public static void main(String[] args) throws Exception

{

InitialContext ctx = new InitialContext();

CalculatorCommonBusiness calculator =

(CalculatorCommonBusiness) ctx.lookup("CalculatorEJB/remote");

System.out.println("1 + 1 = " + calculator.add(1, 1));

}

}
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Lower Level Services
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Lower Level Services

Connection of resources in Client/Server architecture

1. Sockets (TCP/IP, . . . )

2. RPC

3. RMI

4. SOAP (Simple Object Access Protocol)/Web Services
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Sockets

A means for inter-process communication (IPC), both local and over a
computer network.

I Software terminal of a network connection (a data structure)
I Two modes of communication

I Reliable, bidirectional communication stream or
I Unreliable, unidirectional one-shot message (datagram)

I Low level:
I Manipulation of octet-streams required
I Custom protocols

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 35



Sockets
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Sockets in Java
Server: Read two numbers and output their sum

ServerSocket serverSocket = new ServerSocket(1234);

while ( true ) {

Socket client = serverSocket.accept();

InputStream input = client.getInputStream();

OutputStream output = client.getOutputStream();

int value1 = input.read();

int value2 = input.read();

output.write(value1 + value2);

input.close();

output.close();

}
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Sockets in Java
Client: Send two numbers and obtain their sum

Socket server = new Socket("localhost", 1234);

InputStream input = server.getInputStream();

OutputStream output = server.getOutputStream();

output.write(1);

output.write(2);

int result = input.read();

input.close();

output.close();

Aside

I How do we ensure that client and server fit together?

I We’ll consider an approach later on. . .
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Remote Procedure Call (RPC)

I Procedure call across process and system boundaries (heterogeneous)

I Transparent to client code, but some specialities

I Error handling: failures of the remote server or network
I No global variables or side-effects
I Authentication: may be necessary for RPC
I Performance: RPC usually one or more orders of magnitude slower
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Anatomy of RPC

I Define interface in terms of XDR (eXternal Data Representation)

I XDR is a data representation format
I XDR is independent of a particular host language and host architecture

(network format)

I Marshalling: data conversion from internal representation (host
language data) to standardized external representation
Synonyms: Serialization, pickling

I Stub functions for each remotely callable procedure
client code is written in terms of calls to client stubs
server code is called from server stubs

I Stub functions generated by RPC compiler from interface definition
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Timeline of an RPC

time client stub server stub

↓ marshall parameters to XDR
connect to server → invoked by incoming connection
transmit parameters → receive parameters
wait for server response unmarshall parameters

call actual implementation
marshall results

receive results ← transmit results
unmarshall results from XDR exit
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Remote Method Invocation (RMI)

I EJB is built on top of RMI

I Object-oriented RPC, specific to Java
I Implements method calls

I Dynamic dispatch
I Access to object identity (this)

I Object serialization (marshalling)

I Easy to use, access via interfaces

I Latest variant: asynchronous method invocation
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Simple Object Access Protocol (SOAP)

I Transport protocol specification for data exchange and method
invocations between heterogeneous systems.

I Base for the implementation of web services.

I Usually based on HTTP plus extensions.3 May use any other
transport protocol.

I Encodes information using XML / XML Schema4

3reason: internet security, firewalls
4reason: standard, extensibility, can be validated
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Simple Object Access Protocol (SOAP)

Sample request:

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
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Simple Object Access Protocol (SOAP)

Sample response:

HTTP/1.1 200 OK

Content-Type: text/xml;

charset="utf-8"

Content-Length: nnnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
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Web Services and WSDL

Web Services Description Language

I XML-based

I Describes location and protocol of the service

I Often used in combination with SOAP and XML Schema to provide
web services over the Internet

I Main elements (WSDL 1.1):

port Address or connection point (URL)
portType Operations of service (cf. RPC program)
message Specification of parameters

types Data types (XML Schema)
binding Message format and protocol
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WSDL 2.0 Example (excerpt)

<types>

<xs:element name="getTermRequest" type="xs:string">

</xs:element>

<xs:element name="getTermResponse" type="xs:string">

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="getTerm">

<input messageLabel="In" element="tns:getTermRequest"/>

<output messageLabel="Out" element="tns:getTermResponse"/>

</operation>

</interface

I xs is the namespace for XML Schema definitions
xmlns:xs="http://www.w3.org/2001/XMLSchema"

I tns is the targetnamespace for the type definitions
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WSDL Example: One-Way Operation

<types>

<xs:element name="newTermValues">

<xs:attribute name="term" type="xs:string" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="setGlossaryTerm">

<input messageLabel="In" element="tns:newTermValues"/>

</operation>

</interface>

I No return value ⇒ no answer message
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Further Kinds of Operation

I output-only (no <input> params), Example:

<types>

<xs:element name="whatTimeValue"/>

<xs:element name="theTimeValue" type="xs:date"/>

</types>

<interface name="Date">

<operation name="currentTime">

<input messageLabel="In" element="tns:whatTimeValue"/>

<output messageLabel="Out" element="tns:theTimeValue"/>

</operation>

</interface>

I “Notification”: output with empty request
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Automatic generation of WSDL code

Translation from WDSL to a client API is tedious:

1. Parsing XML

2. Verifying XML Schema

3. Choice of data types

4. Binding to HTTP and SOAP possible

⇒ Tools: WSDL2Java
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Glimpse on Two Further Component Models
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Distributed Component Object Model (DCOM)

I Proprietary (Microsoft) format for communication between objects

I Binary standard (not language specific) for “components”

I COM object implements one or more interfaces

I Described by IDL (Interface Definition Language);
stubs etc. directly generated by tools

I Immutable and persistent
I May be queried dynamically

I COM services

I Uniform data transfer IDataObject
(clipboards, drag-n-drop, files, streams, etc)

I Dispatch interfaces IDispatch combine all methods of a regular
interface into one method (RTTI)
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Common Object Request Broker Architecture (CORBA)

I Open distributed object computing infrastructure

I Specified by OMG (Object Management Group)
I Manages common network programming tasks

I Cross-Language: Normalizes the method-call semantics
I Parameter marshalling and demarshalling
I Object registration, location, and activation
I Request demultiplexing
I Framing and error-handling

I Extra services
Component model reminiscent of EJB
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Summary

I Distributed Systems Architecture
I client/server
I web
I n-tier (Java EE 6)

I Middleware building blocks
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