
Software Engineering
Lecture 11: Physical Design — Components and Middleware

Peter Thiemann

University of Freiburg, Germany

SS 2014

Distributed Applications

Basic choices
I Architecture

I Client/Server architecture
I Web-Architecture

I Middleware
I Communication between program components
I Requirements

I Language independence
I Platform independence
I Location independence

I Security

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 35

Client/Server Architecture

ServerClient

I/O layer dialogue

layer

logical

data access

physical

data accessgeneral

applicationapplication
specific

thin client fat client

I Application divided in client-part and server-part

I → Five possible divisions of standard (six) layer architecture
(thin client → fat client)

I Characteristics fixed in the requirements
(# of users, operating systems, database systems, . . .)

advantages: traceability of user session, special protocols, design
influenced by # users

disadvantages: scalability, distribution of client software, portability

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 35

Web Architecture

I Client: only I/O layer; Server: everything else

I Client requirements: Web browser (user interface)

I Server requirements:

I Web server (distribution of documents, communication with
application)

I Application server (application-specific and application-general objects)
I Database server (persistent data)

advantages: scalability (very high number of users, in particular with replicated
servers), maintainability (standard components), no software
distribution required

disadvantages: restriction to HTTP, stateless and connectionless protocol requires
implementation of session management, different Web browsers need to
be supported (Internet Programming)

Current technology addresses some of the disadvantages: Servlets, ASP, . . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 35

Refinement: N-tier Architecture

I Physical deployment follows the logical division into layers (tiers)

I Why?

I Separation of concerns (avoids e.g. mixing of presentation logic and
business logic)

I Scalability
I Standardized frameworks (e.g., Java Platform, Enterprise Edition, Java

EE 6) handle issues like security and multithreading automatically

I Example (Java EE):

I Presentation: Web browser
I Presentation logic: Web Tier (JSP/servlets, JavaServer Faces,

JavaBeans)
I Business logic: Business Tier (Enterprise JavaBeans, Web Services)
I Data access: Enterprise Information System Tier (Java Persistence

API, JDBC, Java Transaction API)
I Backend integration (legacy systems, DBMS, distributed objects)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 35

Enterprise JavaBeans (EJB): Goals

I Part of Java Platform, Enterprise Edition (Java EE 6)

I A SPECIFICATION! but implementations are available

I Server-side component architecture for enterprise applications in Java 1

I Defines interaction of components with their container 2

I Development, deployment, and use of web services

I Abstraction from low-level APIs

I Deployment on multiple platforms without recompilation

I Components developed by different vendors

I Compatible with other Java APIs
1→ main target: business logic, between UI and DBMS
2directory services, transaction management, security, resource pooling, etc.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 35

EJB Component Types

Session Beans

I Interfaces to server-side operations

I Typically business methods
I Three kinds

I Stateless Session Bean: no state carried over between method
invocations; one Bean instance can be shared between multiple clients

I Stateful Session Bean: maintains state between method invocations;
one Bean instance per client

I Singleton Bean: one instance for all

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 35

EJB Component Types /2

Message-Driven Beans

I Event Listeners

I Asynchronous Messaging

Entity Bean

I Object View of RDBMS; object-relational mapping

I Persistence defined separately with JPA (Java Persistence API)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 35

EJB Component Types /3

I All components implemented as POJOs (plain old Java objects)

I No subclassing or implementing of particular interfaces required

I Special roles imposed by annotations

All invocations through interfaces

I Local interface: for method invocations inside the same VM

I Remote interface: for method invocations with unknown location
(less efficient)

I Implementing one bean means implementing several interfaces and
classes consistently

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 35

EJB Example: Remote Interface
A plain Java interface

public interface CalculatorCommonBusiness {

/**

* Adds all arguments

* @return The sum of all arguments */

int add(int... arguments);

}

public interface CalculatorRemoteBusiness

extends CalculatorCommonBusiness{}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 35

EJB Example: Bean Implementation Class
A plain Java class

public class CalculatorBeanBase implements CalculatorCommonBusiness {

/**

* {@link CalculatorCommonBusiness#add(int...)}

*/

@Override

public int add(final int... arguments) {

// Initialize

int result = 0;

// Add all arguments

for (final int arg : arguments) {

result += arg;

}

// Return

return result;

}

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 35

EJB Example: Bean Class
A plain Java class with annotations

import javax.ejb.LocalBean;

import javax.ejb.Stateless;

@Stateless (name = CalculatorEJB)

@Local (CalculatorRemoteBusiness.class)

public class SimpleCalculatorBean extends CalculatorBeanBase {

/*

* Implementation supplied by common base class

*/

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 35

EJB Example: Bean Class
Client Code

import javax.naming.InitialContext;

public class Client

{

public static void main(String[] args) throws Exception

{

InitialContext ctx = new InitialContext();

CalculatorCommonBusiness calculator =

(CalculatorCommonBusiness) ctx.lookup("CalculatorEJB/remote");

System.out.println("1 + 1 = " + calculator.add(1, 1));

}

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 35

Lower Level Services

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 35

Lower Level Services

Connection of resources in Client/Server architecture

1. Sockets (TCP/IP, . . .)

2. RPC

3. RMI

4. SOAP (Simple Object Access Protocol)/Web Services

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 35

Sockets

A means for inter-process communication (IPC), both local and over a
computer network.

I Software terminal of a network connection (a data structure)
I Two modes of communication

I Reliable, bidirectional communication stream or
I Unreliable, unidirectional one-shot message (datagram)

I Low level:
I Manipulation of octet-streams required
I Custom protocols

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 35

Sockets

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 35

Sockets in Java
Server: Read two numbers and output their sum

ServerSocket serverSocket = new ServerSocket(1234);

while (true) {

Socket client = serverSocket.accept();

InputStream input = client.getInputStream();

OutputStream output = client.getOutputStream();

int value1 = input.read();

int value2 = input.read();

output.write(value1 + value2);

input.close();

output.close();

}

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 35

Sockets in Java
Client: Send two numbers and obtain their sum

Socket server = new Socket("localhost", 1234);

InputStream input = server.getInputStream();

OutputStream output = server.getOutputStream();

output.write(1);

output.write(2);

int result = input.read();

input.close();

output.close();

Aside

I How do we ensure that client and server fit together?

I We’ll consider an approach later on. . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 35

Sockets in Java
Client: Send two numbers and obtain their sum

Socket server = new Socket("localhost", 1234);

InputStream input = server.getInputStream();

OutputStream output = server.getOutputStream();

output.write(1);

output.write(2);

int result = input.read();

input.close();

output.close();

Aside

I How do we ensure that client and server fit together?

I We’ll consider an approach later on. . .

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 35

Remote Procedure Call (RPC)

I Procedure call across process and system boundaries (heterogeneous)

I Transparent to client code, but some specialities

I Error handling: failures of the remote server or network
I No global variables or side-effects
I Authentication: may be necessary for RPC
I Performance: RPC usually one or more orders of magnitude slower

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 35

Anatomy of RPC

I Define interface in terms of XDR (eXternal Data Representation)

I XDR is a data representation format
I XDR is independent of a particular host language and host architecture

(network format)

I Marshalling: data conversion from internal representation (host
language data) to standardized external representation
Synonyms: Serialization, pickling

I Stub functions for each remotely callable procedure
client code is written in terms of calls to client stubs
server code is called from server stubs

I Stub functions generated by RPC compiler from interface definition

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 35

Timeline of an RPC

time client stub server stub

↓ marshall parameters to XDR
connect to server → invoked by incoming connection
transmit parameters → receive parameters
wait for server response unmarshall parameters

call actual implementation
marshall results

receive results ← transmit results
unmarshall results from XDR exit

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 35

Remote Method Invocation (RMI)

I EJB is built on top of RMI

I Object-oriented RPC, specific to Java
I Implements method calls

I Dynamic dispatch
I Access to object identity (this)

I Object serialization (marshalling)

I Easy to use, access via interfaces

I Latest variant: asynchronous method invocation

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 35

Simple Object Access Protocol (SOAP)

I Transport protocol specification for data exchange and method
invocations between heterogeneous systems.

I Base for the implementation of web services.

I Usually based on HTTP plus extensions.3 May use any other
transport protocol.

I Encodes information using XML / XML Schema4

3reason: internet security, firewalls
4reason: standard, extensibility, can be validated

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 35

Simple Object Access Protocol (SOAP)

Sample request:

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 35

Simple Object Access Protocol (SOAP)

Sample response:

HTTP/1.1 200 OK

Content-Type: text/xml;

charset="utf-8"

Content-Length: nnnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 35

Web Services and WSDL

Web Services Description Language

I XML-based

I Describes location and protocol of the service

I Often used in combination with SOAP and XML Schema to provide
web services over the Internet

I Main elements (WSDL 1.1):

port Address or connection point (URL)
portType Operations of service (cf. RPC program)
message Specification of parameters

types Data types (XML Schema)
binding Message format and protocol

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 35

WSDL 2.0 Example (excerpt)

<types>

<xs:element name="getTermRequest" type="xs:string">

</xs:element>

<xs:element name="getTermResponse" type="xs:string">

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="getTerm">

<input messageLabel="In" element="tns:getTermRequest"/>

<output messageLabel="Out" element="tns:getTermResponse"/>

</operation>

</interface

I xs is the namespace for XML Schema definitions
xmlns:xs="http://www.w3.org/2001/XMLSchema"

I tns is the targetnamespace for the type definitions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 35

xmlns:xs = "http://www.w3.org/2001/XMLSchema"

WSDL Example: One-Way Operation

<types>

<xs:element name="newTermValues">

<xs:attribute name="term" type="xs:string" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:element>

</types>

<interface name="glossaryTerms">

<operation name="setGlossaryTerm">

<input messageLabel="In" element="tns:newTermValues"/>

</operation>

</interface>

I No return value ⇒ no answer message

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 35

Further Kinds of Operation

I output-only (no <input> params), Example:

<types>

<xs:element name="whatTimeValue"/>

<xs:element name="theTimeValue" type="xs:date"/>

</types>

<interface name="Date">

<operation name="currentTime">

<input messageLabel="In" element="tns:whatTimeValue"/>

<output messageLabel="Out" element="tns:theTimeValue"/>

</operation>

</interface>

I “Notification”: output with empty request

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 35

Automatic generation of WSDL code

Translation from WDSL to a client API is tedious:

1. Parsing XML

2. Verifying XML Schema

3. Choice of data types

4. Binding to HTTP and SOAP possible

⇒ Tools: WSDL2Java

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 35

Glimpse on Two Further Component Models

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 35

Distributed Component Object Model (DCOM)

I Proprietary (Microsoft) format for communication between objects

I Binary standard (not language specific) for “components”

I COM object implements one or more interfaces

I Described by IDL (Interface Definition Language);
stubs etc. directly generated by tools

I Immutable and persistent
I May be queried dynamically

I COM services

I Uniform data transfer IDataObject
(clipboards, drag-n-drop, files, streams, etc)

I Dispatch interfaces IDispatch combine all methods of a regular
interface into one method (RTTI)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 35

Common Object Request Broker Architecture (CORBA)

I Open distributed object computing infrastructure

I Specified by OMG (Object Management Group)
I Manages common network programming tasks

I Cross-Language: Normalizes the method-call semantics
I Parameter marshalling and demarshalling
I Object registration, location, and activation
I Request demultiplexing
I Framing and error-handling

I Extra services
Component model reminiscent of EJB

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 35

Summary

I Distributed Systems Architecture
I client/server
I web
I n-tier (Java EE 6)

I Middleware building blocks

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 35

