
Software Engineering
Lecture 12: Testing and Debugging — Overview

Peter Thiemann

University of Freiburg, Germany

SS 2014



Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell



Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell



Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging,
A Zeller

I The Art of Software Testing, 2nd Edition,
G J Myers

Further Reading

I Code Complete, 2nd Edition, S McConnell



Cost of Software Errors

$ 60 billion

yearly cost of software errors for US economy [NIST 2002]



Cost of Software Errors

$ 60 billion
yearly cost of software errors for US economy [NIST 2002]



Cost of Software Errors

$ 180 billion

total sales of software in 2000

697,000 software engineers & 585,000 computer programmers



Cost of Software Errors

$ 180 billion
total sales of software in 2000

697,000 software engineers & 585,000 computer programmers



Cost of Software Errors

$ 180 billion
total sales of software in 2000

697,000 software engineers & 585,000 computer programmers



Cost of Software Errors

estimated

50%

of each software project spent on testing

(spans from 30% to 80%)



Cost of Software Errors

estimated

50%
of each software project spent on testing

(spans from 30% to 80%)



Cost of Software Errors

estimated

50%
of each software project spent on testing

(spans from 30% to 80%)



Cost of Software Errors

very rough approximation

money cost of
spent on ≈ remaining
testing errors



Cost of Software Errors

very rough approximation

money cost of
spent on + remaining
testing errors

=

66% of size of software
industry



Cost of Software Errors

very rough approximation

money cost of
spent on + remaining
testing errors

=

66% of size of software
industry



A Quiz About Testing

A simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tells whether the triangle is

Scalene: no two sides are equal

Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Task: Create a Set of Test Cases for this Program



A Quiz About Testing

A simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tells whether the triangle is

Scalene: no two sides are equal

Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Task: Create a Set of Test Cases for this Program



Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c



Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle?

(a,b,c) with a > b + c

Define valid triangles: a ≤ b + c



Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c



Solution — 1 Point for each Correct Answer

Q 1: (4,1,2) a invalid triangle

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c

Define valid triangles: a ≤ b + c



Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b



Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b



Solution — 1 Point for each Correct Answer

Q 2: some permutations of previous (1,2,4), (2,1,4)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:

a ≤ b + c and b ≤ a + c and c ≤ a + b



Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b



Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b



Solution — 1 Point for each Correct Answer

Q 3: (4,2,2) a invalid triangle with equal sum

4

2 2

Fulfills above definition, but is invalid (depending on what we
want!).

Patch definition of valid triangles:

a < b + c and b < a + c and c < a + b



Solution — 1 Point for each Correct Answer

Q 4: some permutations of previous (2,2,4), (2,4,2)



Solution — 1 Point for each Correct Answer

Q 5: (3,4,5) a valid scalene triangle

4

5
3



Solution — 1 Point for each Correct Answer

Q 6: (3,3,3) an equilateral triangle

3

3

3



Solution — 1 Point for each Correct Answer

Q 7: (3,4,3) valid isosceles t.

3 3

4



Solution — 1 Point for each Correct Answer

Q 8: all permutations of valid isosceles triangle:

(3,4,3), (3,3,4), (4,3,3)



Solution — 1 Point for each Correct Answer

Q 9: one side with zero value (0,4,3)



Solution — 1 Point for each Correct Answer

Q 10: one side with negative value (-1,4,3)



Solution — 1 Point for each Correct Answer

Q 11: all sides zero (0,0,0)



Solution — 1 Point for each Correct Answer

Q 12: at least one value is non-integer (1,3,2.5)



Solution — 1 Point for each Correct Answer

Q 13: wrong number of arguments (2,4) or (1,2,3,3)



Solution — 1 Point for each Correct Answer

Q 14 (the most important one):

Did you specify the expected output in each case?



About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average



About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average



First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I A specification is required to identify failures

The discipline of Testing is all about Test Cases

Remark: At Ericsson: 35% of code is test cases!



First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I A specification is required to identify failures

The discipline of Testing is all about Test Cases

Remark: At Ericsson: 35% of code is test cases!



First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude more failures

I A specification is required to identify failures

The discipline of Testing is all about Test Cases

Remark: At Ericsson: 35% of code is test cases!



What is a Bug?

Basic Terminology

Harvard University, Mark II Aiken Relay Calculator

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)



What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)



What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)



What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)



What is a Bug? Basic Terminology

Bug-Related Terminology

1. Defect (aka bug, fault) introduced to code by programmer
(not always programmer’s fault, if, e.g., requirements
changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by

a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Failure and Specification

Some failures are obvious
I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by a specification!

Correctness is a relative notion

— B. Meyer, 1997

Every program is correct with respect to SOME specification

— myself, today



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in
Scotland of which one at
least is brown!

Computer Scientist:
No, there is at least one
cow in Scotland, which
is brown on one side!!



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification?



Specification: Putting it into Practice

Example

A Sorting Program:

1 public static Integer [] sort(Integer [] a) { ...

}

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Is this a good specification?



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Is this a good specification?

sort({2, 1, 2}) == {1, 2, 2, 17} 8



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a sorted array with only elements from a



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a sorted array with only elements from a

sort({2, 1, 2}) == {1, 1, 2} 8



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

sort(null) throws NullPointerException 8



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is a non-null array of integers
Ensures: returns a permutation of a that is sorted



Example Cont’d

Example

1 public static Integer [] sort(Integer [] a) { ...

}

Specification

Requires: a is a non-null array of integers

Ensures: returns the unchanged reference a containing
a permutation of the old contents of a that is
sorted



The Contract Metaphor

Contract is preferred specification metaphor for procedural and
OO PLs

first propagated by B. Meyer, Computer 25(10)40–51, 1992

Same Principles as Legal Contract between a Client and
Supplier

Supplier aka Implementer, in Java, a class or method

Client Mostly a caller object, or human user for main()

Contract One or more pairs of ensures/requires clauses
defining mutual benefits and obligations of client and
implementer



The Meaning of a Contract

Specification (of method C::m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C::m() fulfills the required Precondition, then the
class C ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C::m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C::m() is
executed.”



The Meaning of a Contract

Specification (of method C::m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C::m() fulfills the required Precondition, then the
class C ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C::m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C::m() is
executed.”



Failure

Definition: failure

A method fails if it is called in a state fulfilling the required
precondition of its contract and does not terminate in a state
fulfilling the postcondition.

Non-termination, abnormal termination considered as failures here



Notions of Correctness

Definition: partial correctness

A method is partially correct if whenever it is started in a state
fulfilling the required precondition and it terminates, then its final
state fulfills the postcondition.

This amounts to proving Absence of Failures!

Definition: total correctness

A method is totally correct if whenever it is started in a state
fulfilling the required precondition, then it terminates and its final
state fulfills the postcondition.

Total correctness implies termination!



Notions of Correctness

Definition: partial correctness

A method is partially correct if whenever it is started in a state
fulfilling the required precondition and it terminates, then its final
state fulfills the postcondition.

This amounts to proving Absence of Failures!

Definition: total correctness

A method is totally correct if whenever it is started in a state
fulfilling the required precondition, then it terminates and its final
state fulfills the postcondition.

Total correctness implies termination!



Invariant

Objects with non-trivial state

often maintain a class invariant.

Example: a class for dates

public class Date {

public int day;

public int month;

public int year;

}
Invariant:
1 <= day <= 31 /\ 1 <= month <= 12 /\

(month in {4, 6, 9, 11} => day <= 30) /\

(month == 2 => day <= 29) /\

(month == 2 /\ (year % 4 != 0 \/

(year % 100 == 0 /\ year % 400 != 0))

=> day <= 28)



Invariant II

I All public methods of a class must preserve the class invariant.

I Class invariants can be incorporated into pre- and
postconditions.

Specification (of a method)

Requires: Precondition and Invariant
Ensures: Postcondition and Invariant

Specification (of a constructor)

Requires: Precondition
Ensures: Invariant



Invariant II

I All public methods of a class must preserve the class invariant.

I Class invariants can be incorporated into pre- and
postconditions.

Specification (of a method)

Requires: Precondition and Invariant
Ensures: Postcondition and Invariant

Specification (of a constructor)

Requires: Precondition
Ensures: Invariant



Further Elements of a Contract

Type signature (minimal contract)

Exceptions raised

Temporal properties

I the capacity of the table does not change over time

I a set that is only supposed to grow



Testing vs. Verification

TESTING
Goal: find evidence for presence of failures

Testing: execute a program with the intent of detecting failure

Testing cannot guarantee correctness, i.e., absence of failures

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures

Verification guarantees correctness

Related techniques: code generation, program synthesis (from spec)



Testing vs. Verification

TESTING
Goal: find evidence for presence of failures

Testing: execute a program with the intent of detecting failure

Testing cannot guarantee correctness, i.e., absence of failures

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures

Verification guarantees correctness

Related techniques: code generation, program synthesis (from spec)



Debugging: from Failures to Defects

I Both, testing and verification attempts exhibit new failures

I Debugging is a systematic process that finds and eliminates
the defect that led to an observed failure

I Programs without known failures may still contain defects:
I if they have not been verified
I if they have been verified,

but the failure is not covered by the specification



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test cases

Code under test

Code checking success

Test case generator

Test oracle

Formal specification



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

I ca. 15.000 proof steps

I ca. 200 case distinctions

I Two human interactions, ca. 1 minute computing time



Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large programs

Tools Used
I Automated running of tests: JUnit

I Debugging: Eclipse debugger



Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large programs

Tools Used
I Automated running of tests: JUnit

I Debugging: Eclipse debugger


	Costs of Errors and Testing
	Quiz
	Terminology
	Specification
	Verification
	Debugging
	Formalisation

